

THE HATIOMAL SERRES Of STAINARAR SCHOOL-B

COMPRISES STANDARD WORKS

In every department of instruction and of every grade. The teacher in want of a book fo ticular purpose or class, will always find the best of its kind in our catalogue. No other si claims to be as complete as this. None is so extensive or so judiciously selected. Amon volumes a high standard of merit is maintained, as it is our aim never to permit our impr poor or 1 countryfreedam almost ur
Parke
Nat
the n
volun
series

Davie
\&c.callec the pl
Barne
-For intere the m
Mont -The a nnn
Steale Che: they
Clarz Hovel
Worm \&c.new 0
Searix and 0

B

"heoiy anu a wacuce-mulbrook's normai mernoas-NORTHENy's feacuer's adosotant.
\& DESCRIPTIVE CATALOGUE of all these and many more may be obtained by stamp to the Publishers,

A. S. BARNES \& COMPANY,
 National Educational Publishers,

111 \& 113 WILLIAM STREET. NEW YO

THE WORMAN SERIES IN MODERN LANGUAGE．

3OMPLETE COURSE IN GERMAN
 By JAMES H．WORIMAN，A．M．
 EMBRACNO
 GMFNTARF GERMAN GRAMIMAR，
 COMPLELIE GIERMAN GRAMMAR， COLLIEGIA＇PIE GERMAN IRFADER， ELHEMENTAKY GERMAN RFADER， 2MAN COPY－ROOKS，GERMAN ECHO． LORY OF GERMAN LITHRA＇IURE， GEIKMAN AND IENGLISII LIEXICON．
 HE：GELEMAY GRAMMARS of Worman are widely preferred on ac－ （ their clear，explicit method（on the conversation plan），introducing a system ggy and comparison with the learners＇own language and others commonly
 rts of speaking，of understanding the spoken language，and of correct pronan－ are treated with great success．
 rew classitication of nouns and of irregular verbs are of great value to the The nse of heavy type to indicate etymological changen，is new．The Vocabu－ ymonymical－also a new feature．

FORMAN＇S GERMAN READER contains progressiye selections Fhe range of the very best German anthors，including three complete plays， re uauaily purchased in separato form for advanced etudents who have com－ te ordinary Reader．
Biographies of eminent authors，Notes after the text，References to all Ger－ ammars in common use，and ais adcizate Vocabulary；almo，Exercises for ion into the German．
WOItMIN＇S GEREMAN NCHO）（Dentaches Echo）is entirely a new this country．It presents famillar colloquinl excreises withont translation， teach fluent converwation in a few months of diligent atudy．
zer method will ever make the student at home in a forelgn language．By this is in，as well as speaks it．For the time being he is a German through and

The laborions process of translating his thoughts no longer impedes free rrassed utterance．

liman＇s complere frrice course

is inacguthatbd by

エア白

rench Echo ；＂，on a plan identical with the German Echo deseribed above．
This will be foliowed In dee course by the other volnmes of
THEF FRENCH SHRIFE，
viz．：
 A HISTORY OF FIRENEII LITERATURE．

WORMAN＇S WORKS

ted as fast as published by many of the best institutions of the country．In aness，adaptation，sad homogeneity for consistent courses of Instruction，they are simply

LITERATURE AND BELLES LETTRES.

PROFESSOR CLEVELAND'S WORKS.

A. WHOLE LIBRARY IN FOUR VOLUMES. courpinuin: =imekivir

One Hundred and Twenty Thousand of these Volumes have been sold, and they are the acknowledged Standard wherever this refining study is pursued.

PROF. JAMES R. BOYD'S WORKS.

EMBRACDNG
COMPOSITION, LOGIC, LITERATURE, RHETORIC, CRITICLSM, BIOGRAPHY;-POETRY, AND PRONE.

BOYD'S COMPOSITION AND RHETORIC.

Remarkable for the space and attention given to grammatical principles, to afford a substantial groundwork; also for the admirable treatment of synonymes, figurative language, and the sources of argument and illustration, with notable exercises for prepariag the way to poetic composition.

BOYD'S ELEMENTS OF LOGIC.

explains, first, the conditions and processes by which the mind receives ideas, and then anfolds the art of reasoning, with clear directions for the establishment and confirmation of sound judgment. A thoroughly practical treatise, being a systematic and philosophical condensation of all that is known of the subject.

BOYD'S KAMES' CRITICISM.

This standard work, as is well known, treats of the faculty of perception, and the result of its exercise upon the tastes and emotions. It may therefore be termed a Compendium of Aesthetics and Natural Morals; and its use in refining the mind and heart has made it a standard text-book.

BOYD'S ANNOTATED ENGLISH CLASSICS.

Milton's Paradise Lost.
© Young's Night Thoughts. Cowper's Task, Tuble Talk, \&cc.

Thomson's Seasons. Pollok's Course of Time. Lord Bacon's Essays.

In six cheap volumes. The service done to literature, by Prof. Boyd's Annotations npon these standard writers, can with difficulty be estimated. Line by line their expressions and ideas are analyzed and discussed, until the best comprehension of the powerful use of language is obtained by the learner.

Digitized by the Internet Archive in 2008 with funding from Microsoft Corporation

N E W

 elementary Algebra.

 elementary Algebra.}

EMBRACINO

THE FIRST PRINCIPLES OF THE SCIENCE.

By
Charles Davies, LL.D., FHOFRSEOB OF HIGLEB MATEEMATICB, COLEMBLA COLLEGE.

A. S. BARNES\&COMPANY, NEW YORK AND CHICAGO.
1875.

IN MEMORIAM

DAVIES' MATHEMATICS.

THE WEST POINT COURSE,

 And Only Thorough and Complete Mathematical Series.
IN THEFE PARTS.

I.:OOMMON SOHOOL OOURSE.

Davies" Primary Arithmetic. - The fundamental principles displayed in abject Lessong.
Davigs" Intollsctual Arithmetic-Referring all operatious to the unit 1 as the only tangible Wasis for logical development.
Davies" slements of Written Arithmetic:-A practical introduction to the whole subject. Theory subordinated to Practice.
Davies' Practical Arithmetic.*-The most successful combination of Theory and Practice, clear, exact, brief, and comprehensive.
II. AOADEMIO OOURSE.

Davies' University Arithmetic**-Treating the subject exhaustively as a science, in a logical series of connected propositions.
Davies Flementary Algebra.*-A connecting link, conducting the pupil easily from arithmetical processes to abstract analysis.
Davies' University Algebra^*-For institutions desiring a more complete but not the fullest course in pure Algebra.
Davies' Practical MIathematics.-The science practically applied to the useful arts, as Drawing, Architecture, Surveying, Mechanics, etc.
Davies 马lementary Geometry.-The important principles in simple form, but with all the exactness of vigorous reasoning.
Davies' Flements of Surveying.-Re-written in 18\%0. The simplest and most practical presentation for youths of 12 to 16.
III. OOLLEGIATE OOURSE.

Davies' Bourdon's Algebran*-Embracing Sturm's Theorem, and a most exhaustive and scholarly course.
Davies' University Algebra.*-A shorter course than Bourdon, for Institutions have less time to give the subject.
Davies' Iegendre's Geometry.-Acknowledged the only satisfactory treatise of its grade. 300,000 copies have been sold.
Davies' Analytical Geometry and Calculus:-The shorter treatises, combined in one volume, are more available for American courses of study.
Davies' Analytical Greometry- $\}^{\text {The original compendiums, for those de- }}$
Davies' Diff. \& Int. Calculus. siring to give full time to each branch.
Davies' Descriptive Geometry - With application to Spherical Trigonometry, Spherical Projections, and Warped Surfaces.
Davies" Shades; Shadows, and Perspective=-A succinct expcsition of the mathematical principles involved.
Davies' Science of THathematics-For teachers, embracing
I. Gramiar of Arithmetic, III. Logio and Utility of Mathimatics, II. Outlines of Mathematics, IV. Mathematical Dictionary.

* Keys may be obtained from the Publishers by Teachers only.

Entered, according to Act of Congress, in the year 1859, by
CHARLES DAVIES,
In the Cle:k's Office of the District Court of the United States for the Southem District of New York.

PREFACE.

Algebra naturally follows Arithmetic in a course of scieltific studies. The language of figures, and the elementary combinations of numbers, are acquired at an early age. When the pupil passes to a new system, conducted by letters and signs, the change seems abrupt; and he often experiences much difficulty before perceiving that Algebra is but Arithmetic written in a different language.

It is the design of this work to supply a connecting link between Arithmetic and Algebra; to indicate the unity of the methods, and to conduct the pupil from the arithmetical processes to the more abstract methods of analysis, by easy and simple gradations. The work is also introductory to the University Algebra, and to the Algebra of M. Bourdon, which is justly considered, both in this country and in Europe, as the best text-book on the subject, which has yet appeared.

In the Introduction, or Mental Exercises, the language of figures and letters are both employed. Each Lesson is so arranged as to introduce a single principle, not known iii
before, and the whole is so combined as to prepare the pupil, by a thorough system of mental training, for those processes of reasoning which are peculiar to the algebraic analysis.

It is about twenty years since the first publication of the Elementary Algerra. Within that time, great changes have taken place in the schools of the country. The systems of mathematical instruction have been improved, now methods have been developed, and these require corresponding modifications in the text-books. Those modifications hare now been made, and this work will be permanent in its present form.

Many changes have been made in the present edition, at the suggestion of teachers who have used the work, and favored me with their opinions, both of its defects and merits. I take this opportunity of thanking them for the valuable aid they have rendered me. The criticisms of those engaged in the daily business of teaching are invaluable to an author; and I shall feel myself under special obligation to all who will be at the trouble to communicate to me, at any time, such changes, either in methods or language, as their experience may point out. It is only through the cordial co-operation of teachers and authors-by joint labors and mutual efforts-that the text-books of the country can be brought to any reasonable degree of perfection.

A Key to this volume has been prepared for the use of Teachers only.

CONTENTS.

C \boldsymbol{n} A PTER 1.
DEFINITIONS AND EXILANATORY BIGNB PAGE
Algebra-Defin_tions-Explanation of the Sigus 38-41
Examples in writing Algebraic expressious 41
Interpretation of Algebraic language 42
CIIAPTERII.
fendamental operationg.
Addition-Rule-Examples 43-50
Subtraction-Rule-Examples-Remarks 50-56
Multiplication-Monomials-Polyuomials 56-68
Division-Monomials. 63-68
Signification of the symbol a° 68-70
Division of Polynomials-Examples 71-75
CHAPTER III.
deeful furmclas. factoring, eto.
Formulas (1), (2), (3), (4), (5), and (6) 78-79
Factoring 79-81
Greatest Common Divisor. 81-84
Ireast Commou Multiple 94-87
CHAPTER IV
Eractions.
Transformation of Fractions 89
To Reduce an Entire Quantity to a Fractional Form 90
To Reduce a Fraction to its Lowest Terms
FAGES 90
To Reduce a Fraction to a Mixed Quantity 92
To Reduce a Mixed Quantity to a Fraction 93
To Reduce Fractions to a Common Denominator
Addition of Fractions $96-98$
Subtraction of Fractions 98-?
Multiplication of Fractions 99-10\%
Division of Fractions $102-105$
CHAPTER \quad.
EQUATIONS OF THE FIPST DEGREE.
Definition of an Equation-Different Kinds 105-106
Transformation of Equations-First and Second 106-110
Solution of Equations-Rule 110-114
Problems involving Equations of the First Degree 115-130
Equations involving Two Unknown Quantities 130-131
Elimination-By Addition-By Subtraction-By Comparison 131-143
Problems involving Two Unknown Quantities 143-148
Equations involving Three or more Unknown Quantities 148-159
CHAPTER VI.
FORMATION OF POWERS.
Definition of Powers 160-161
Powers of Monomials 161-163
Powers of Fractions 163-165
Powers of Binomials 165-167
Of the Terms-Exponents-Coefficients 167-170
Binomial Formula-Examples 170-172
CHAPTER VII.
GQUARE ROOT. RADIOALS OF THE BEOOND DEGREE.
Definition-Perfect Squares-Rule-Examples 178-179
Square Root of Fractions 179-181
Square Root of Monomials 181-189
Imperfect Squares, or Radicals 183-187
Addition of Radicals 187-189
Subtraction of Radicals 189-190

> OONTENTE.
PAGES.
Multiplication of Radicals 190-191
Division of Radicals 191-192
Square Root of Polynomials 183-197
CHAPTER VIII.
equations of the seoond deoree.
Equations of the Second Degree-Definition-Form 198-200
Incomplete Equations 200-203
Complete Equations-Rule 209-211
Four Forms 211-227
Four Properties 227-2!9
Yormation of Equations of the Second Degree 229-231
Numerical Values of the Roots 231-236
Problems 236-240
Equations involving more than One Unknown Quantity 241-250
Problems 250-254
CHAPTER IX.
ARITHMETICAL AND OEOMETRICAL PROPORTION.
Wars in which Two Quantities may be Compared 255
Arithmetical Proportion and Progression 256-257
Last Term 257-260
Sum of the Extremes-Sum of Series 260-262
The Five Numbers-To find any number of lieans 262-265
Geometrical Proportion 267
Various Kinds of Proportion 268-278
Geometrical Progression. 278-280
Last Term-Sum of Series. 280-285
Progression having an Infinite Number of Terms. 285-288
The Five Numbers-To find One Mean 288-289
CHAPTER \quad.
Looartrims.
Theory of Logarithms. $290-255$

SUGGESTIONS TO TEACHERS.

1. Tue Introduction is designed as a mental exercise. If thoroughly taught, it will train and prepare the mind of the pupil for those higher processes of reasonng, which it is the peculiar province of the algelraic analysis to develop.
2. The statement of each question should be made, and every step in the solution gone through with, without the aid of a slate or black-board; thcugh perhaps, in the beginning, some aid may be necessary to those unaccustomed to such exercises.
3. Great care must be taken to have every principle on which the statement depends, carefully analyzed; and equal care is necessary to have every step in the solution distinctly explained.
4. The reasoning process is the logical connection of distinct apprehensions, and the deduction of the consequences which follow from such a connection. Hence, the basis of all reasoning must lie in distinct elementary ideas.
5. Therefore, to teach one thing at a time-to teach that thing well-to explain its connections with other things and the consequences which follow from such connections, would seem to embrace the whole art of instruction.

ELEMENTARY ALGEBRA.

INTRODUCIION.
MENTALEXERCISE.
\section*{LESSON I.}

1. Jonn and Charles have the same number of apples; both together have twelve: how many has each?
Avalysis.-Let x denote the number which John has; then, since they have an equal number, x will also denote the number which Charles has, and twice x, or $2 x$, will denote the number which both have, which is 12 . If twice x is equal to $12, x$ will be equal to 12 divided by 2, which is 6 ; therefore, each has 6 apples.

whitten.

Let x denote the number of apples which John has; then,

$$
x+x=2 x=12 ; \text { hence, } x=\frac{12}{2}=6
$$

Nore.-When x is written with the sign + before it, it is read plus x : and the line above, is read, x plus x squals 12.

Norix. - When is written by itself, it is read one x and is the same as, 110 ;

x	x,	or one	x,	
$2 x$,	$"$	twice	x, or two	x,
$3 x$,	$"$	three times x, or three	x,	
$4 x$,	$"$	four times	x,	or four
$\&$,	x,			
$\& c .$,	$\& c .$,	$\& c$.		

2. What is $x+x$ equal to?
3. What is $x+2 x$, equal to?
4. What is $x+2 x+x$ equal to?
5. What is $x+5 x+x$ equal to?
6. What is $x+2 x+3 x$ equal to?
7. James and John together have twenty-four peaches, and one has as many as the other : how many has each?

Analysis.-Let x denote the number which James has; then, since they have an equal number, x will also denote the number which John has, and twice x will denote the number which both have, which is 24 . If twice x is equal to $24, x$ will be equal to 24 divided by 2 , which is 12 ; therefore, each has 12 peaches.

WRITTEN.

Let x denote the number of peaches which James has; then,

$$
x+x=2 x=24 ; \text { hence, } x=\frac{24}{2}=12
$$

VERIFICATION.
A Terification is the operation of proving that the num. ber found will satisfy the conditions of the question. Thus,

| James' app.es. |
| :---: | :--- |
| 12 |$\quad+\quad$| John's apples. |
| :--- |
| $=$ | 24.

Note--Let the following questions be analyzed, written, and verified, in exactly the same manner as the above.
8. William and John together have 36 pears, and one has as many as the other : how many has each?
9. What number added to itself will make 20?
10. James and John are of the same age, and the sum of their ages is 32 : what is the age of each?
11. Lucy and Ann are twins, and the sum of their ages is $16:$ what is the age of each?
12. What number is that which added to itself will make 30 ?
13. What number is that which added to itself will make 50 ?
14. Each of two boys received an equal sum of money at Christmas, and together they received 60 cents: how much had each?
15. What number added to itself will make 100 ?
16. John has as many pears as William; together they have 72 : how many has each?
17. What number added to itself will give a sum equal to 46 ?
18. Lucy and Ann have each a rose bush with the same number of buds on each; the buds on both number 46: how many on each?

LESSON II.

1. John and Charles together have 12 apples, and Charles has twice as many as John: how many has each?

Analysis.-Let x denote the number of apples which John has; then, since Charles has twice as many, $2 x$ will denote his share, and $x+2 x$, or $3 x$, will denote the number which they both have, which is 12 .' If $3 x$ is equal to $12, x$ will be equal to 12 divided by 3 , which is 4 ; therefore, John has 4 apples, and Charles, having twice as many, has 8.

WRITTISN.
Yet x denote the number of apples John has, then, $2 x$ will denote the number of apples Charles has; and $x+2 x=3 x=12$, the number both have; then, $x=\frac{12}{3}=4$, the number John has; and, $2 x=2 \times 4=8$, the number Charles has.

- verticication.

$$
4+8=12, \text { the number both have. }
$$

2. William and John together have 48 quills, and William has twice as many as John: how many has each?
3. What number is that which added to twice itself, will give a number equal to 60 ?
4. Charles' marbles added to John's make 3 times as many as Charles has; together they have 51 : how many has each?

Analysis.-Since Charles' marbles added to John's make three times as many as Charles has, Charles must have one third, and John two thirds of the whole.

Let x denote the number which Charles has; then $2 x$ will denote the number which John has, and $x+2 x$, or $3 x$, will denote what they both have, which is 51 . Then, if $3 x$ is equal to $51, x$ will be equal to 51 divided by 3 , which is 17. Therefore, Charles has 17 marbles, and Johns having twice as many, has 34 .

WRITTEN.

Let x denote the number of Charles' marbles; then,
$\simeq x$ will denote the number of John's marbles; and
$3 x=51$, the number of both; then,
$x=\frac{51}{3}=17$, Charles' marbles; and
$17 \times 2=34$, John's marbles.
5. What number added to twice itself will make 75 ?
6. What number added to twice itself will make $5 \uparrow$?
7. What number added to twice itself will make 39 ?
8. What number added to twice itself will give 90 ?
8. John walks a certain distance on Tuesday, twice as far on Wednesday, and in the two days he walks 27 miles: how far did he walk each day?
10. Jane's bush has twice as many roses as Nancy's: and on both bushes there are 36 : how many on each ?
11. Samuel and James bought a ball for 48 cents; Samuel paid twice as much as James: what did each pay?
12. Divide 48 into two such parts that one shall be double the other.
13. Divide 66 into two such parts that one shall be douple the other.
14. The sum of three equal numbers is 12 : what are the numbers?

Analysis.-Let x denote one of the numbers; then, since the numbers are equal, x will also denote each of the others, and x plus x plus x, or $3 x$ will denote their sum, which is 12 . Then, if $3 x$ is equal to $12, x$ will be equal to 12 divided by 3 , which is 4 : therefore, the numbers are 4,4 , and 4.

WRITTEN.

Let x denote one of the equal numbers; then,

$$
\begin{aligned}
& x+x+x=3 x=12 ; \text { and } \\
& x=\frac{12}{3}=4 \text {. }
\end{aligned}
$$

verification.

$$
4+4+4=12
$$

15. The sum of three equal numbers is 24 : what are the numbers?
16. The sum of three equal numbers is 36 : what are the numbers?
17. The sum of three equal numbers is 54 : what are the numbers?

LESSON III.

1. What number is that which added to three times itself will make 48?

Avalysis.-Let x denote the number; then, $3 x$ will denote three times the number, and x plus $3 x$, or $4 x_{\text {, }}$ will denote the sum, which is 48 . If $4 x$ is equal to 48 , x will be equal to 48 divided by 4 , which is 12 ; therefore, 12 is the required number.

WRITTEN.

Let x denote the number; then,

$$
\begin{aligned}
& 3 x=\text { three times the number; and } \\
& x+3 x=4 x=48, \text { the sum: then, } \\
& x=\frac{48}{4}=12, \text { the required number. } \\
& \text { venification. }
\end{aligned}
$$

$$
12+3 \times 12=12+36=48
$$

Note.-All similar questions are solved by the same form of analysis.
2. What number added to 4 times itself will give 40 ?
3. What number added to 5 times itself will give 42 ?
4. What number added to 6 times itself will give 63 ?
5. What number added to 7 times itself will give 88 ?
6. What number added to 8 times itself will give 81 ?

ヶ. What number added to 9 times itself will give 100 ?
8. James and John together have 24 quills, and John has three times as many as James: how many has each?
9. William and Charles have 64 marbles, and Charles has 7 times as many as William: how many has each?
10. Janes and Johv travel 96 miles, and James travels 11 times as far as John : hew far does each travel?
11. The sum of the ages of a father and son is 84 years; and the father is 3 times as old as the son: what is the age of each ?
12. There are two numbers of which the greater is 7 tunes the less, and their sum is 72 : what are the numbers?
13. The sum of four equal numbers is 64 : what are the numbers?
14. The sum of six equal numbers is 54 : what are the numbers?
15. James has 24 marbles; he loses a certain number, and then gives away 7 times as many as he loses which takes all he has: how many did he give away? Verify.
16. William has 36 cents, and divides them between his two brothers, James and Charles, giving one, eight times as many as the other: how many does he give to each?
17. What is the sum of x and $3 x$? Of x and $7 x$? Of x and $5 x$? Of x and $12 x$?

LESSON IV.

1. If 1 apple costs 1 cent, what will a number of apples denoted by x cost??

Avalysis.-Since one apple costs 1 cent, and since x denotes any number of apples, the cost of x apples will be as many cents as there are apples: that is, x cents.
2. If 1 apple costs 2 cents, what will x apples cost?

Aralysis.-Since one apple costs 2 cents, and since x denotes the number of apples, the cost will be twice as many cents as there are apples: that is $2 x$ cents.
3. If 1 apple costs 3 cents, what will x apples cost ?
4. If 1 lemon costs 4 cents, what will x lemons cost?
5. If 1 orange costs $\overline{6}$ cents, what will x oranges cost ?
6. Charles bought a certain number of lemons at 2 cents apiece, and as many,oranges at 3 cents apiece, and paid in all 20 cents: how many did he buy of each?

Avalysis.-Let x denote the number of lemons; then, since he bought as many oranges as lemons, it will also denote the number of oranges. Since the lemons were 2 cents apiece, $2 x$ will denote the cost of the lemons; and since the oranges were 3 cents apiece, $3 x$ will denotè the cost of the oranges; and $2 x+3 x$, or $5 x$, will denote the cost of both, which is 20 cents. Now, since $5 x$ cents are equal to 20 cents, \dot{x} will be equal to 20 cents divided by 5 cents, which is 4 : hence, he bought 4 of each.

WRITTEN.

Let x denote the number of lemons, or oranges; then, $2 x=$ the cost of the lemons; and
$3 x=$ the cost of the oranges; hence,
$2 x+3 x=5 x=20$ cents $=$ the cost of lemons and cranges ; hence,

$$
x=\frac{20 \text { cents }}{5 \text { cents }}=4, \text { the number of each. }
$$

verification.
4 lemons at 2 cents each, give, $4 \times 2=8$ cents.
4 oranges at 3 cents each, " $4 \times 3=12$ cents.
Hence, they both cost, 8 cents +12 cents $=20$ cents.
7. A farmer bought a certain number of sheep at 4 dollars apiece, and an equal number of lambs at dollar apiece, and the whole cost 60 dollars: how many did he buy of each ?
8. Charles bought a certain number of apples at 1 cent apiece, and an equal number of oranges at 4 cents apiece, and paid 50 cents in all : how many did he buy of each?
9. James bought an equal number of apples, pears, and lemons; he paid 1 cent apiece for the apples, 2 cents apiece for the pears, and 3 cents apiece for the lemons, and paid 72 cents in all : how many did he buy of each? Verify.
10. A farmer bought an equal number of sheep, hogs, and calves, for which he paid 108 dollars; he paid 3 dollars apiece for the sheep, 5 dollars apiece for the hogs, and 4 dollars apicee for the calves: how many did he buy of each ?
11. A farmer sold an equal number of ducks, geese, and turkeys, for which he received 90 shillings. The ducks brought him 3 shillings apiece, the geese 5 , and the turkeys 7: how many did he sell of each sort?
12. A tailor bought, for one hundred dollars, two pieces of cloth, each of which contained an equal number of yards. For one piece he paid 3 dollars a yard, and for the other 2 dollars a yard: how many yards in each piece?
13. The sum of three numbers is 28 ; the second is twice the first, and the third twice the second: what are the numbers? Verify.
14. The sum of three numbers is 64 ; the second is 3 times the first, and the third 4 times the second: what are the numbers?

LESSON V.

1. If 1 yard of cloth costs x dollars, what will 2 yards cost?

Analysis.-Two yards of cloth will cost twice as much as one yard. Therefore, if 1 yard of eloth costs x dollars, 2 yards will cost twice x dollars, or $2 x$ dollars.
2. If 1 yard of cloth costs x dollars, what will 3 yards cost? Why?
3. If 1 orange costs x cents, what will $?$ oranges cost : Why? 8 oranges?
4. Charles bought 3 lemons and 4 oranges, for which he paid 22 cents. He paid twice as much for an orange as for a lemon: what was the price of each?

Avalisis.-Let x denote the price of a lemon; then, $2 x$ will denote the price of an orange; $3 x$ will denote the cost of 3 lemons, and $8 x$ the cost of 4 oranges ; hence, $3 x$ plus $8 x$, or $11 x$, will denote the cost of the lemons and oranges, which is 22 cents. If $11 x$ is equal to 22 cents, x is equal to 22 cents divided by 11, which is 2 cents: therefore, the price of 1 lemon is 2 cents, and that of 1 orange 4 cents.

whitten.

Let x denote the price of 1 lemon; then,

$$
2 x=\quad \text { " } \quad 1 \text { orange ; and }
$$

$3 x+8 x=11 x=22$ cts., the cost of lemons and oranges; hence, $\quad x=\frac{22 \text { cts. }}{11}=2$ cts., the price of 1 lemon; and,
$2 \times 2=4$ cts., the price of 1 orange.
VERIFICATION.
$3 \times 2=6$ cents, cost of lemons,
$4 \times 4=\frac{16 \text { cents, }}{22 \text { cents, }}$, total cost.
5. James bought 8 apples and 3 oranges, for which he paid 20 cents. He paid as much for 1 orange as for 4 apples. what did he pay for one of each ?

6 A farmer bought 3 calves and 7 pigs, for which he paid 19 dollars. He paid four times as much for a calf as for a pig: what was the price of each?
7. James bought an apple, a peach, and a pear, for which he paid 6 cents. He paid twice as much for the peach as for
the apple, and three times as much for the pear as for the apple: what was the price of each?
8. William bought an apple, a lemon, and an orange, for which he paid 24 cents. He paid twice as much for the lemon as for the apple, and 3 times as much for the orange as for the apple: what was the price of each ?
9. A farmer sold 4 calves and 5 cows, for which he received 120 dollars. He received as much for 1 cow as for 4 calves : what was the price of each?
10. Lucy bought 3 pears and 5 oranges, for which she paid 20 cents, giving twice as much for each orange as for each pear: what was the price of each?
11. Ann bought 2 skeins of silk, 3 pieces of tape, and a penknife, for which she paid 80 cents. She paid the same for the silk as for the tape, and as much for the penknife as for both: what was the cost of each?
12. James, John, and Charles are to divide 56 cents among, them, so that John shall have twice as many as James, and Charles twice as many as John: what is the share of each?
13. Put 54 apples into three baskets, so that the second shall contain twice as many as the first, and the third as many as the first and second: how many will there be in each.
14. Divide 60 into four such parts that the second shall be double the first, the third double the second, and the fourth double the third: what are the numbers?

LESSON VI.

1. If $2 x+x$ is equal to $3 x$, what is $3 x-x$ equal to? Written, $\quad 3 x-x=2 x$.
2. What is $4 x-x$ equal to? 'Written,

$$
4 x-\mathfrak{x}=3 x
$$

3. What is $8 x$ minus $6 x$ equal to? Written,

$$
8 x-6 x=2 x
$$

4. What is $12 x-9 x$ equal to?

Ans. $3 x$.
5. What is $15 x-7 x$ equal to?
6. What is $17 x-13 x$ equal to?

Ans. $4 x$.
7. Two men, who are 30 miles apart, travel towards each other ; one at the rate of 2 miles an hour, and the other at the rate of 3 miles an hour: how long before they will meet?

Analysis.-Let x denote the number of hours. Then, since the time, multiplied by the rate, will give the distance, $2 x$ will denote the distance traveled by the first, and $3 . x$ the distance traveled by the second. But the sum-of the distances is 30 miles; hence,

$$
2 x+3 x=5 x=30 \text { miles }
$$

and if $5 x$ is equal to $30, x$ is equal to 30 divided by 5 , which is 6 : hence, they will meet in 6 hours.

WRITTEN.

Let x denote the time in hours; then,

$$
\begin{aligned}
& 2 x=\text { the distance traveled by the } 1 \text { st ; and } \\
& 3 x=
\end{aligned} \% 6
$$

By the conditions,

$$
2 x+3 x=5 x=30 \text { miles, the distance apart }
$$

hence,

$$
x=\frac{30}{5}=6 \text { hours. }
$$

VERIFICATION.

$2 \times 6=12$ miles, distance traveled by the first.
$3 \times 6=\frac{18 \text { miles, }}{30 \text { miles }}$ distance traveled by the second
8. Two persons are 10 miles apart, and are traveling in the same direction; the first at the rate of 3 miles an hour, and the second at the rate of 5 miles: how long, before the second will overtake the first?

Analysis.-Let x denote the time, in hours. Then, $3 x$ will denote the distance traveled by the first in x hours; and $5 x$ the distance traveled by the second. But when the second overtakes the first, he will have traveled 10 miles more than the first : hence,

$$
5 x-3 x=2 x=10 ;
$$

if $2 x$ is equal to $10, x$ is equal to 5 hence, the second will overtake the first in 5 hours.

WRITTEN.

Let x denote the time, in hours: then, $3 x=$ the distance traveled by the 1 st;
and, $5 x=$ " \quad " ;
and, $5 x-3 x=2 x=10$ hours;
or,

$$
x=\frac{10}{2}=5 \text { hours. }
$$

verification.
$3 \times 5=15$ miles, distance traveled by 1 st .
$5 \times 5=25$ miles, " " 2 d.

$$
25-15=10 \text { miles, distance apart. }
$$

9. A cistern, holding 100 hogsheads, is filled by two pipes; one discharges 8 hogsheads a minute, and the other 12: in what time will they fill the cistern?
10. A cistern, holding 120 hogsheads, is filled by 3 pipes; the first discharges 4 hogsheads in a minute, the second 7 , and the third 1: in what time will they fill the cistern?
11. A cistern which holds 90 hogsheads, is filled by a pipe which discharges 10 hogsheads a minute; but there is a waste pipe which loses 4 hogsheads a minute: how long will it take to fill the cistern?
12. Two pieces of cloth contain each an equal number of sards; the first cost 3 dollars a yard, and the second 5 , and both pieces cost 96 dollars: how many yards in each?
13. Two pieces of cloth contain each an equal number of jards; the first cost 7 dollars a yard, and the second 5 ; the first
cost 60 dollars more than the second: how many yards in each piece?
14. John bought an equal number of oranges and lemons the oranges cost him 5 cents apiece, and the lemons 3 ; and he pard 56 cents for the whole: how many did he buy of each kind?
15. Charles bought an equal number of oranges and lemons; the oranges cost him 5 cents apiece, and the lemons 3 ; he paid 14 cents more for the oranges than for the lemons: how many did he buy of each?
16. Two men work the same number of days, the one receives 1 dollar a day, and the other two: at the end of the time they receive 54 dollars : how long did they work ?

LESSON VII.

1. John and Charles together have 25 cents, and Charles has 5 more than Jolm : how many has each?

Analysis.-Let x denote the number which John has; then, $x+5$ will denote the number which Charles has, and $x+x+5$, or $2 x+5$, will be equal to 25 , the number they both have. Since $2 x+5$ equals $25,2 x$ will be equal to 25 minus 5 , or 20 , and x will be equal to 20 divided by 2 , or 10 : therefore, John has 10 cents, and Dharles 15.

WRITTEN.

Let x denote the number of John's cents; then,

$$
x+5=\quad \text { } x \quad \text { Charles' cents; and }
$$

$x+x+5=25$, the number they both have; or,

$$
2 x+5=25 ; \text { and }
$$

$$
2 x=25-5=20 ; \text { hence, }
$$

$$
x=\frac{20}{2} \quad=10, \text { John's number ; and }
$$

$$
10+5=15, \text { Charles' number. }
$$

VERIFICATION.

John's Charles'. 10$+15$	
Charles'.	$=25$, the sum.
15	-10

2. James and John have 30 marbles, and John has 4 more than James : how many has each?
3. William bought 60 oranges and lemons; there were 20 more lemons than oranges: how many were there of each sort?
4. A farmer has 20 more cows than calves; in all he has 36 : how many of each sort?
5. Lncy has 28 pieces of money in her purse, composed of cents and dimes; the cents exceed the dimes in number by 16 : how many are there of each sort?
6. What number added to itself, and to 9 , will make 29 ?
7. What number added to twice itself, and to 4 , will make 25 ?
8. What number added to three times itself, and to 12 , will make 60 ?
9. John has five times as many marbles as Charles, and what they both have, added to 14 , makes 44 : how many has each ?
10. There are three numbers, of which the second is twice the first, and the third twice the second, and when 9 is added to the sum, the result is 30 : what are the numbers?
11. Divide 17 into two such parts that the second shall be two more than double the first: what are the parts?
12. Divide 40 into three such parts that the second shall be twice the first, and the third exceed six times the first by 4 : what are the parts?
13. Charles has twice as many cents as James, and Johu
has twice as many as Charles; if 7 be added to what they all have, the sum will be 28 : how many has each ?
14. Divide 15 into three such parts that the second shall be 3 times the first, the third twice the second, and 5 over: what are the numbers?
15. An orchard contains three kinds of trees, apples, pears, and cherries; there are 4 times as many pears as apples, twice as many cherries as pears, and if 14 be added, the number will be 40 ; how many are there of each?

LESSON VIII.

1. John after giving away 5 marbles, had 12 left: how many had he at first?
Analysis.-Let x denote the number; then, x minus 5 will denote what he had left, which was equal to 12 . Since x diminished by 5 is equal to $12, x$ will be equal to 12 , increased by 5 ; that is, to 17 : therefore, he had 17 marbles.

written.

Let x denote the number he had at first; then, $x-5=12$, what he had left; and $x=12+5=17$, what he first had.

verification.

$$
17-5=12, \text { what were left. }
$$

2. Charles lost 6 marbles and has 9 left: how many had he at first?
3. William gave 15 cents to John, and had 9 left: how many had he at first?
4. Ann plucked 8 buds from her rose bush, and there were 19 left: how many were there at first?
5. William took 27 cents from his purse, and there were 1:3 left: how many were there at first?
6. The sum of two numbers is 14 , and their difference is $2:$: what are the numbers?

Avalasis.-The difference of two numbers, added to the less, will giwe the greater. Let x denote the less number; then, $x+2$, will denote the greater, and $x+x+2$, will denote their sum, which is 14 . Then, $2 x+2$ equals 14 ; and $2 x$ equals 14 minus 2 , or 12 : hence, x equals 12 divided by 2 , or 6 : hence, the numbers are 6 and 8 .

verification.

$6+8=14$, their sum; and $8-6=2$, their difference.
7. The sum of two numbers is 18 , and their difference 6 : what are the numbers?
8. James and John have 26 marbles, and James has 4 more than John: how many has each?
9. Jane and Lucy have 16 books, and Lucy has 8 more than Jane: how many has each?
10. William bought an equal number of oranges and lemons; Charles took 5 lemons, after which William had but 25 of both sorts: how many did he buy of each?
11. Mary has an equal number of roses on each of two bushes; if she takes 4 from one bush, there will remain 24 en both : how many on each at first ?
12. The sum of two numbers is 20 , and their difference is 6 : what are the numbers?

Analysis.-If x denotes the greater number, $x-6$ will denote the less, and $x+x-6$ will be equal to 20 ; hence, $2 x$ equals $20+6$, or 26 , and x equals 26 divided by 2 , equals 13 ; hence the numbers are 13 and 7 .

WRITTEN.

Let x denote the greater; then,

$$
x-6=\text { the less } ; \text { and }
$$

$\mathfrak{x}+\boldsymbol{x}-6=20$, their sum; hence,

$$
2 x=20+6=26 ; \text { or }
$$

$$
x=\frac{26}{2}=13 ; \text { and } 13-0=7
$$

VERIFICATION.
$13+7=20 ;$ and, $13-7=6$.
13. The sum of the ages of a father and son is 60 yeares, and their difference is just half that number: what are the r ages?
14. The sum of two numbers is 23 , and the larger lacks 1 of being 7 times the smaller: what are the numbers?
15. The sum of two numbers is 50 ; the larger is equal to 10 times the less, minus 5 : what are the numbers?
16. John has a certain number of oranges, and Charles has four times as many, less seven; together they have 53: how many has each?
17. An orchard contains a certain number of apple trees, and three times as many cherry trees, less 6 ; the whole number is 30 : how many of each sort?

LESSON IX.

1. If x denotes any number, and 1 be added to it, what will denote the sum? Ans. $x+1$.
2. If 2 be added to x, what will denote the sum? If 3 be added, what? If 4 be added? \&c.

If to John's marbles, one marble be added, twice bis number will be equal to 10 : how many had he?

Analrsis.-Let x denote the number; then, $x+1$ will denote the number after 1 is added, and twice this number,
or $2 x+2$, will be equal to 10 . If $2 x+2$ is equal to 10 , $2 x$ will be equal to 10 minus 2 , or 8 ; or x will be equal to 4 . WRITTEN.
I.et x denote the number of John's marbles; then, $x+1=$ the number, after 1 is added; and

$$
\begin{aligned}
& 2(x+1)=2 x+2=10 ; \text { henee, } \\
& 2 x=10-2 ; \text { or } x=\frac{8}{2}=4
\end{aligned}
$$

verification.

$$
2(4+1)=2 \times 5=10
$$

4. Write $x+2$ multiplied by 3 . What is the product?
5. Write $x+4$ multiplied by 5 . What is the product?
6. Write $x+3$ multiplied by 4. What is the product?
7. Luey has a certain number of books; her father givas her two more, when twice her number is equal to 14 : how many has she?
8. Jane has a certain number of roses in blossom; two more bloom, and then 3 times the number is equal to 15 : how many were in blossom at first?
9. Jane has a certain number of handkerchiefs, and buys 4 more, when 5 times her number is equal to 45 : how many had she at first?
10. John has 1 apple more than Charles, an 13 times John's, adiled to what Charles has, make 15: l:ow many has each?

Analysis.-Let x denote Charles' apples; then $x+1$ will denote John's; and $x+1$ multiplied by 3 , added to x, or $3 x+3+x$, will be equal to 15 , what they both had; hence, $4 z+3$ equals 15 ; and $4 x$ equals 15 minus 3 , or 12 ; and $\mathbb{E}=4$. Write, and rerify.
11. James has two marbles more than William, and imice his marbles plus twice William's are equal to 16: how many has each?
12. Divide 20 into two such parts that one part shall exceed the other by 4.
13. A fruit-basket contains apples, pears, and peaches; there are 2 more pears than apples, and twice as many peaches as pears; there are 22 in all: how many of each sort?
14. What is the sum of $x+3 x+2(x+1)$?

15, What is the sum of $2(x+1)+1(x+1)+x$?
16. What is the sum of $x+5(x+8)$?
17. The sum of two numbers is 11 , and the second is equal to twice the first plus 2 : what are the numbers?
18. John bought 3 apples, 3 lemons, and 3 oranges, for which he paid 27 cents; he paid 1 cent more for a lemon than for an apple, and 1 cent more for an orange than for a lemon: what did he pay for each?
19. Lucy, Mary, and Ann, have 15 cent ; Mary has 1 more than Lucy, and Ann twice as many as Mary?

LESSON X.

1. If a denote any number, and 1 be subtracted from it, what will denote the difference? Ans. $x-1$.

If 2 be subtracted, what will denote the difference? If 3 be subtracted? 4? \&c.
2. John has a certain number of marbles; if 1 be taken away, twice the remainder will be equal to 12 : how many has he?

Analysis.-Let x denote the number; then, $x-1$ will denote the number after 1 is taken away; and twice this number, or $2(x-1)=2 x-2$, will be equal to 12. If $2 x$
dimmished by 2 is equal to $12,2 x$ is equal to 12 plus 2 , or 14 ; hence, x equals 14 divided by 2 , or 7 .
whitten.
Let x denote the number; then,
$x-1=$ the number which remained, and

$$
\begin{aligned}
& 2(x-1)=2 x-2=12 ; \text { hence } \\
& \quad 2 x=12+2, \text { or } 14 ; \text { and } x=\frac{14}{2}=7 .
\end{aligned}
$$

verificatton.
$2(7-1)=14-2=12$; also, $2(7-1)=2 \times 6=12$.
3. Write 3 times $x-1$. Ans. $3(x-1)$. What is the product equal to?
4. Write 4 times $x-2$.

What is the product equal to?
5. Write 5 times $x-5$. Ans. $3 x-3$. Ans. $4(x-2)$. Ans. $4 x-8$. Ans. 5(x-5). Ans. $5 x-25$. What is the product equal to? - 1 denote a greater or less number? how much less?
7. If $x-1$ is equal to 4 , what will x be equal to ?

$$
\text { Ans. } 4+1 \text { or } 5 .
$$

8. If $x-2$ is cqual to 6 , what is x equal to ?
9. James and John together have 20 oranges; John has 6 less than Jameṣ: how many has each?
10. A grocer sold 12 pounds of tea and coffee; if the tea be diminished by 3 pounds, and the remainder multiplied by 2 , the product is the number of pounds of coffee: how many pounds of each ?
11. Ann has a certain number of oranges; Jane has 1 less and twice her number added to Ann's make 13: hew many nas each?

Avalisis.- Let x denote the number of oranges which Ann has; then, $x-1$ will denote the number Jane has,
and $x+2 x-2$, or $3 x-2$, will denote the number both have, which is 13 . If $3 x-2$ equals $13,3 x$ will be equal to $13+2$, or 15 ; and if $3 x$ is equal to $15, x$ will be equal to 15 divided by 3 , which is 5 : hence, Ann has 5 oranges and Jane 4.

whertien.

Let x denote the number Ann has; then, $x-1=$ the number Jane has; and $2(x-1)=2 x-2=$ twice what Jane has; also, $x+2 x-2=3 x-2=13$; hence, $3 x=13+2=15 ;$ or $x=\frac{15}{3}=5$.

verification.

$$
5-4=1 ; \text { and } 2 \times 4+5=13
$$

12. Charles and John have 20 cents, and John has 6 less than Charles: how many has each?
13. James has twice as many oranges as lemons in his basket, and if 5 be taken from the whole number, 19 will remain: how many had he of each?
14. A basket contains apples, peaches, and pears; 29 in all. If 1 be taken from the number of apples, the remainder will denote the number of peaches, and twice that remainder will denote the number of pears: how many are there of each sort?
15. If $2 x-5$ equals 15 , what is the value of x ?
16. If $4 x-5$ is equal to 11 , what is the value of x ?

17 If $5 x-12$ is equal to 18 , what is the value of x ?
18. The sum of two numbers is 32 , and the greater exceeds the less by 8 : what are the numbers?
19. The sum of 2 numbers is 9 ; if the greater number be diminished by 5 , and the remainder multiplied by 3 , the product will be the less number: what are the numbers?
20. There are three numbers such that 1 taken from the
first will give the second ; the second multiplied by 3 will give the third; and their sum is equal to 26 : what are the uumbers?
21. John aud Charles together have just 31 oranges; if 1 be taken from John's, and the remainder be multiplied by 5, the product will be equal to Charles' number: how many has each? 6 .
22. A basket is filled with apples, lemons, and oranges, in all 26 ; the number of lemons exceed the apples by 2 , and the number of oranges is double that of the lemons: how nany are there of each? 5 .

LESSON XIs

1. John has a certain number of apples, the half of which is equal in 10 : how imany has he?

Axalisis.-Let x denote the number of apples; then, x divided by 2 is equal to 10 ; if one half of x is equal to 10 , twice one-half of x, or x, is equal to twice 10 , which is 20 ; hence, x is equal to 20 .

Note.-A similar analysis is applicable to any one of the fractional units. Let each question be solved according to the analysis.
2. John has a certain number of oranges, and one-third of his number is 15 : how many has he?
3. If one-fifth of a number is 6 , what is the number?
4. If one-twelfth of a number is 9 , what is the number?
5. What number added to one-half of itself will give a sum equal to 12 ?
Avarisis.- Denote the mumber by x; then, x plus one half of x equals 12. But x plus one-half of x equals three halves of x : hence, three halves of x equal 12 . If three halves of x equal 12 , one-half of x equals one-third of 12,
or 4. If one-half of x equals $4, x$ equals twice 4 , or 8 , hence, x equals 8 .

WRITTEN.

Let x denote the number; then,

$$
\begin{aligned}
x+\frac{1}{2} x=\frac{3}{2} x & =12 ; \text { then, } \\
\frac{1}{2} x & =4, \text { or } x=8 .
\end{aligned}
$$

verificatton.

$$
8+\frac{8}{2}=8+4=12
$$

6. What number added to one-third of itself will give a sum equal to 12 ?
7. What number added to one-fourth of itself will give a sum equal to 20?
8. What number added to a fifth of itself will make 24 ?
9. What number diminished by one-half of itself will leave 4? Why?
10. What number diminished by one-third of itself will leave 6 ?
11. James gave one-seventh of his marbles to William, and then has 24 left : how many had he at first?
12. What number added to two-thirds of itself will give a sum equal to 20 ?
13. What number diminished by three-fourths of itself will leave 9 ?
14. What number added to five-sevenths of itself will make 24 ?
15. What number diminished by seven-eighths of itself will leave 4 ?
16. What number added to eight-ninths of itself srill make 34 ?

elementary algebra.

CIIAPTER I.

DEFINITIONS AND EXPLANATORY SIGNS.

1. Quantity is anything which can be increased, diminished, and measured; as number, distance, weight, time, \&c.

To measure a thing, is to find how many times it contains some other thing of the same kind, taken as a standard. The assumed standard is called the unit of measure.
2. Mathematics is the science which treats of the measurement, properties, and relations of quantities.

In pure mathematies, there are but eight kinds of quantity, and consequently but eight kinds of Unrts, viz.: Units of Number; Units of Currency ; Units of Length; Units of Surface; Units of Volume; Units of Weight; Units of Time; and Units of Angular Measure.
3. Algerra is a branch of Mathematies in which the quantities considered are represented by letters, and the operations to be performed are indicated by signs.

1. What is quantity? What is the operation of measuring a thing? What is the assumed standard called?
2. What is Mathematics? How many kinds of quantity are there ic de pure mathematics? Name the unite of thos quantities.
3. What is Algebra?
4. The quantities employed in Algebra are of two kinds, Fnown and Unknown:

Finown Quantities are those whose values are given; and
Unknown Quantities are those whose values are re quired.
Kinown Quantities are generally represented by the lead ing letters of the alphabet, as, a, b, c, \&c.

Unknown Quantities are generally represented by the final letters of the alphabet ; as, x, y, z, \&e.

When an unknown quantity becomes known, it is often denoted by the same letter with one or more accents; as, $x^{\prime}, x^{\prime \prime}, x^{\prime \prime}$. These symbols are read: x prime $; x$ second; x third, dec.
5. The Sign of Addition, + , is called plus. When placed between two quantities, it indicates that the second is to be added to the first. Thus, $a+b$, is read, a plus b, and indicates that b is to be added to a. If no sign is written, the sign + is understood.
The sign + , is sometimes called the positive sign, and the quantities before which it is written are called positive quantities, or additive quantities.
6. The Sign of Subtraction, -, is called minus. When placed between two quantities, it indicates that the second is to be subtracted from the first. Thus, the expression,

[^0]$c-d$, read c minus c, indieates that d is to be subtracted from c. If a stands for 6 , and d for 4 , then $a-d$ is equal to $6-4$, which is equal to 2 .
The sign -, is sometimes called the negative sign, and the quantitios before which it is written are called negative quansities, or subtractice quartities.
7. The Sign of Multiplication, x, is read, multiplied $b y$, or into. When placed between two quantities, it indicates that the first is to be multiplied by the second. Thus, $a \times b$ indicates that a is to be multiplied by b. If a stands, for 7 , and b for 5 , then, $a \times b$ is equal to 7×5, which is equal to 35 .
The multiplication of quantities is also indicated by simply writing the letters, one after the other; and sometimes, by placing a point between them; thus,
$a \times b$ signifies the same thing as $a b$, or as $a . b$.
$a \times b \times c$ signifies the same thing as $a b c$, or as a.l.c.
8. A Factor is any one of the multipiers of a product. Factors are of two kinds, numeral and literal. Thus, in the expression, $5 a b c$, there are four factors: the numeral factor, 5 , and the three literal factors, a, b, and c.
9. The Sign of Drvisiox, \div, is read, divided by. When written between two quantities, it indicates that the first is to be divided by the second.

[^1]There are three signs used to denote division. Thus, $a \div b$ denotes that a is to be divided by b. a
$\bar{b}$$\quad$ denotes that a is to be divided by b. $a \underline{b}$ denotes that a is to be divided by b.
10. The Sign of Equality, $=$, is read, equal to. When written between two quantities, it indieates that they are equal to each other. Thus, the expression, $a+b=c$, indicates that the sum of a and b is equal to c. If a stands for 3 , and b for $5, c$ will be equal to 8 .
11. The Sign of Inequality, $><$, is read, greater than, or less than. When placed between two quantities, it indicates that they are unequal, the greater one being placed at the opening of the sign. Thus, the expression, $a>b$, indicates that a is greater than b; and the expression, $c<d$, indicates that c is less than d.
12. The sign.\because means, therefore, or consequently.
13. A Coefficient is a number written before a quan. tity, to show how many times it is taken. Thus,

$$
a+a+a+a+a=5 a,
$$

in which 5 is the coefficient of a.
A coefficient may be denoted either by a number, or a letter. Thus, $5 x$ indicates that x is taken 5 times, and $a x$

[^2]indicates that x is taken a times. If no coefficient is written, the coefficient 1 is understood. Thus, a is the same as $1 a$.
14. An Exponent is a number writen at the right and ahove a quantity, to indicate how many times it is taken as a factor. Thus,
\[

$$
\begin{array}{r}
a \times a \text { is written } \\
a \times a \times a \\
a \times a \times a \times a \\
\& \text { c., } \\
a^{2}, \\
a^{3}, \\
a^{4},
\end{array}
$$
\]

n which 2, 3, and 4, are exponents. The expressions are read, a square, a cube or a third, a fourth; and if we have a^{m}, in which a enters m times as a factor, it is read, a to the m th, or simply a, $m t h$. The exponent 1 is generally omitted. Thus, a^{1} is the same as a, each denoting that a enters lut once as a factor.
15. A Power is a product which arises from the multiplication of equal factors. Thus,
$a \times a=a^{2}$ is the square, or second power of a.
$a \times a \times a=a^{3}$ is the cube, or third power of a.
$a \times a \times a \times a=a^{4}$ is the fourth power of a. $a \times a \times \ldots=a^{m}$ is the m th power of a.
16. A Root of a quantity is one of the equal factors. The radical sign, $\sqrt{ }$, when placed over a quantity, indieates that a root of that quantity is to be extracted. The root is indicated by a number written over the radical sign,

[^3]called an index. When the index is 2 , it is generally omitted. Thus,
$\sqrt[2]{a}$, or \sqrt{a}, indicates the square root of a.
$\sqrt[3]{a}$ indicates the cube root of a.
$\sqrt[4]{a}$ indicates the fourth root of a.
$\sqrt[n]{a}$ indicates the m th root of α.
17. An Algebraic Expression is a quantity written in algebraic language. Thus,

$3 a\left\{\begin{array}{c}\text { is the algebraic expression of th. ree times } \\ \text { the number denoted by } a ;\end{array}\right.$
$5 a^{2}\left\{\begin{array}{l}\text { is the algebraic expression of five times } \\ \text { the square of } a ;\end{array}\right.$
$7 a^{3} b^{2}\left\{\begin{array}{l}\text { is the algebraic expression of seven times } \\ \text { the the cube of } a \text { multiplied by the } \\ \text { square of } b ;\end{array}\right.$
(is the algebraic expression of the differ$s a-5 b\left\{\begin{array}{l}\text { ence between three times } a \text { and five } \\ \text { tines } b ;\end{array}\right.$
is the algebraic expression of twice the
square of a, diminished by three times $2 a^{2}-3 a b+4 b^{2}\{$ the product of a by b, augmented by four times the square of b.
18 A Term is an algebraic expression of a single quantity. Thus, $3 a, 2 a b,-5 a^{2} b^{2}$, are terms.
19. The Degrees of a term is the number of its literal factors. Thus,
$3 a\{$ is a term of the first degree, because it contains but one literal factor.
17. What is an algebraic expression
18. What is a term?
19. What is the degree of a term? What determinea the degree of a term?
$5\left(t^{2}\{\right.$ is of the second degree, because it contains two lite. ral factors.
is of the fourth degree, because it contains four literal $7 a^{3} b\{$ factors. The degree of a term is determined by the sum of the exponents of all its letters.
20. A Mosomal is a single term, unconnected with any other by the signs f or - ; thas, $3 a^{2}, 3 b^{3} a$, are monomials.
21. A Polfnomal is a collection of terms connected by the signs + or - ; as,

$$
3 a-5, \text { or, } 2 a^{3}-3 b+4 b^{2}
$$

2:. A Binomal is a polynomial of two terms; as,

$$
a+b, 3 a^{2}-c^{2}, 6 a b-c^{2}
$$

23. A Trinomal is a polynomial of three terms; as,

$$
a b c-a^{3}+c^{3}, a b-g h-f
$$

2.1. Homogeneous Terms are those which contain the a ame number of literal factors. Thus, the terms, $a b c,-a^{3}$, $+c^{3}$, are homogeneous; as are the terms, $a b,-g h$.
25. A Polynomal is homogeneous, when all its terms are homogencons. Thus, the polynomial, $a b c-a^{3}+c^{3}$, is homogeneous; but the polynomial, $a b-g h-f$ is not homogencous.
28. Simmar Terms are those which contain the same literal factors affected with the same exponents. Thus,

$$
7 a b+3 a b-2 a b
$$

25. What is a monomial?
26. What is a polyuomial?
27. What is a binomial?
28. What is a trinomial?
i4. What are homogencous terms?
29. When is a polynomial homogeneous?
30. What are etmilar terms?
are similar terms; and so also are,

$$
4 a^{2} b^{2}-2 a^{2} b^{2}-3 a^{2} b^{2}
$$

but the terms of the first polynomial and of the last, are not similar.

- 27. Tife Vinculum, _, the Bar |, the Paren. thesis, (), and the Brackets, [], are each used to connect several quantities, which are to be operated upon in the same manner. Thus, each of the expressions,

$$
\begin{gathered}
\overline{a+b+c} \times x,\left.\quad \begin{array}{r}
a \\
+b \\
+c
\end{array}\right|^{x}(a+b+c) \times x \\
\text { and } \quad[a+b+c] \times x
\end{gathered}
$$

indicates, that the sum of a, b, and c, is to be multiplied by x.
28. The Reciprocal of a quantity is 1 , divided by that quantity; thus,

$$
\frac{1}{a}, \frac{1}{a+b}, \frac{c}{c},
$$

are the reciprocals of

$$
a, a+b, \frac{d}{c} .
$$

29. Tife Numerical Value of an algebraic expression, is the result obtained by assigning a numerical value to each letter, and then performing the operations indicated. Thus, the numerical value of the expression,

$$
a b+b c+c
$$

when, $a=i, b=2, c=3$, and $d=4$, is

$$
1 \times 2+2 \times 3+4=12
$$

by performing the indicated operations.

[^4]
EXAMCPLES LN WRITLNG ALGEBEAIC EXPIRESSIONS.

1. Write a added to b.
2. Write b subtracted from a.

Ans. $a+b_{\text {. }}$
Ans. $a-b$.

Write the following:
3. Six times the square of a, minus twice the square of b.
4. Six times a multiplied by b, diminished by 5 times c cube multiplied by d.
5. Nine times a, multiplied by c plus d, diminished $b y$ 8 times b multiplied by a cube.
6. Five times a minus b, plus 6 times a cube into b cube.
7. Eight times a cube into d fourth, into c fourth, plus 9 times c cube into a fifth, minus 6 times a into b, into c square.
8. Fourteen times a plus b, multiplied by a minus b, plus 5 times a, into c plus d.
9. Six times a, into c plus d, minus 5 times b, into a plus c, minus 4 times a cube b square.
10. Write a, multiplied by c plus d, plus f minus g.
11. Write a divided by $b+c$. Three ways.
12. Write $a-b$ divided by $a+b$.
13. Write a polynomial of three terms; of four terms; of five, of six.
14. Write a homogeneous binomial of the first degree; of the second; of the third; 4th; 5th; 6th.
15. Write a homogeneous trinomial of the first degree; with its second and third terms negative; of the second degree; of the 3rd; of the 4th.
16. Write in the same column, on the slate, or black-board, a monomial, a binomial, a trinomial, a polynomial of four terms, of five terms, of six terms and of seven terms, and all of the same degree.

interpretation of algebraic language.

Find the numerial values of the following expressions, when,

$$
\begin{aligned}
& a=1, \quad b=2, \quad c=3, \quad d=4 . \\
& \text { 1. } a b+b c \text {. } \\
& \text { 2. } a+b c+d \text {. } \\
& \text { 3. } a d+b-c \text {. } \\
& \text { 4. } a b+b c-d \text {. } \\
& \text { 5. }(a+b) c^{2}-d \text {. } \\
& \text { 6. }(a+b)(d-b \text {.) } \\
& \text { 7. }(a b .+a d) c\rangle+d \text {. } \\
& \text { 8. }(a b+a)(a d-a) \text {. } \\
& \text { 9. } 3 a^{2} b^{2}-2(a+d+1) \text {. } \\
& \text { Ans. 8. } \\
& \text { Ans. } 11 . \\
& \text { Ans. 3. } \\
& \text { Ans. } 4 . \\
& \text { Ans. } 23 . \\
& \text { Ans. } 6 . \\
& \text { Ans. } 22 . \\
& \text { Ans. } 15 . \\
& \text { 10. } \frac{a+c}{2} \times(a+d) \\
& \text { Ans. } 0 . \\
& \text { Ans. } 10 . \\
& \text { 11. } \frac{a^{2}+b^{2}+c^{2}}{7} \times \frac{a^{3}+b^{3}+c^{3}-d}{2} \text {. } \\
& \text { Ans. } 32 . \\
& \text { 12. } \frac{a b^{4}-c-a^{3}}{6} \times \frac{d a^{2}-b+d^{3}}{33} \\
& \text { Ans. } 4 .
\end{aligned}
$$

Find the numerical values of the following expressions, when,

$$
a=4, b=3, c=2, \quad \text { and } d=1
$$

13. $\frac{a}{2}-\frac{b}{3}+c-d$.

Ans. 2.
14. $5\left(\frac{a b}{3}-\frac{a-d}{3}\right)$.

Ans. 15.
15. $\left[\left(a^{2} b+1\right) d\right] \div\left(a^{2} b+d\right)$. Ans. 1.
16. $4\left(a b c-\frac{b^{3}}{9}\right) \times\left(30 c^{3}-a b^{3} d^{3}\right)$ Ans. 11088.
17. $\frac{a+b+c}{a-b+c}+\frac{a b c d}{a b}+\frac{4 a^{2}+b^{2}-d^{2}}{b c+b}$. Ans. $14 \frac{1}{2}$.
18. $\frac{15(a+d+b)}{3 c^{2}}-\frac{a-c}{2}+\left\{\frac{3}{a h_{i}} \times a^{3} b^{3} c^{3} \cdot d^{3}\right.$. Ans. 3465 .

CHAPTER II.

FUNDAMENTAL OPERATIONS.
ADDITION.
30. Addrtion is the operation of finding the simplest equivalent expression for the angregate of two or more algrebraic quantities. Such expression is called their Sum.

When the terms are similar and have like signs.

31. 32. What is the sum of $a, 2 a, 3 a$, and $4 a ? |$\begin{tabular}{l}

+

+

+

+

\hline
\end{tabular} Take the sum of the cocfficients, and annex the $+3 u$ literal parts. The first term, a, has a coefficient, 1, understood (Art. 13).

$+4 a$
$+10 a$
2. What is the sum of $2 a b, 3 a b, 6 a b$, and $a b$. stood (Art 5).

Add the following :

(3).	(4).	(5).	(6).
a	$8 a b$	$7 a c$	$+4 a b c$
$+\frac{a}{2 a}$	$\frac{7 a b}{15 a b}$	$\overline{5 a c}$	$\frac{3 a b c}{12 a c}$

30. What is addition?
31. What is the rule for addition when the terme are similar and have Uike signs?

$\left(\begin{array}{c}(7 .) \\ -3 a b c \\ - \\ -2 a b c \\ -5 a b c\end{array}\right.$	$-3 a d$	$-\underline{2 a d}$	$-2 a d f$
$-\underline{2 a d}$	$-\underline{6 a d f}$	$-9 a b d$	
$-\frac{15 a b d}{8 a d f}$	$-\frac{10 .)}{24 a b c l}$		

Hence, when the terms are similar and have like signs:

RULI.

Add the coefficients, and to their sum prefix the common sign; to this, annex the common literal part.

EXAMPLES.		
(11.)	(12.)	
$9 a b+a x$	$8 a c^{2}-3 b^{2}$	$15 a b^{3} c^{4}-12 a b c^{2}$
$3 a b+3 a x$	$7 a c^{2}-8 b^{2}$	$12 a b^{3} c^{4}-15 a b c^{2}$
$12 a b+4 a x$	$3 a c^{2}-9 b^{2}$	$a b^{3} c^{4}-a b c^{2}$

When the terms are similar and have winlike signs.
32. The signs, + and - , stand in direct opposition to each other.

If a merchant writes + before his gains and - before 7 is losses, at the end of the year the sum of the plus numbers will denote the gains, and the sum of the minus numbers the losses. If the gains exceed the losses, the difference, which is called the algebraic sum, will be plus; but if the losses exceed the gains, the algebraic sum will be minus.

1. A merchant in trade gained $\$ 1500$ in the first quarter of the year, $\$ 3000$ in the second quarter, but lost $\$ 3006$ in the third quarter, and $\$ 800$ in the fourth: what was the result of the year's business?

2. What is the rule when the terms are s:milar and have unlike elgns?
3. A merchant in trade gained $\$ 1000$ in the first quarter, and $\$ 2000$ the second quarter ; in the third quarter he lost $\$ 1500$, and in the fourth quarter $\$ 1800$: what was the result of the year's business?

1st quarter,	$+1000$	3d quarter	- 1.500
2 d	+ 2000	4th "6	- 1800
	$+3000$		-3300

3. A merchant in the first half-year gained a dollars and lost b dollars; in the second half-year he lost a dollars and gained b dollars : what is the result of the year's business?

1st half-year,	$+a$	$-b$
$2 d$ ".	$\frac{-a}{0}$	$\frac{+b}{0}$
Result,		

Hence, the algebraic sum of a positive and negative quantity is their arithmetical difference, with the sign of the greater prefixed. Add the following:

$$
\begin{array}{rrr}
8 a b & 4 a c b^{2} & -4 a^{2} b^{2} c^{2} \\
3 a b & -8 a c b^{2} & +6 a^{2} b^{2} c^{2} \\
-6 a b \\
\hline 5 a b & -\frac{a c b^{2}}{3 a c b^{2}} & \frac{-2 a^{2} b^{2} c^{2}}{0}
\end{array}
$$

Hence, when the terms are similar and have unlike signs:
I. Write the similar terms in the same column:
II. Add the coefficients of the additive terms, and also the coefficients of the subtractive terms:
III. Take the difference of these sums, prefix the sign of the greater, and then annex the literal part.

> EXAMPLES.

1. What is the sum of

$$
2 a^{2} b^{3}-5 a^{2} b^{3}+7 a^{2} b^{3}+6 a^{2} b^{3}-11 a^{2} b^{3} ?
$$

Having written the similar terms in the same column, we find the sum of the positive coefficlients to be 15 , and the sum of the negative coefficients to be $-16:$ their difference is -1 ; hence, the sum is $-a^{2} b^{3}$.
$2 a^{2} b^{3}$
$-5 a^{2} b^{3}$
$+7 a^{2} b^{3}$
t- $6 a^{2} b^{3}$
$-11 a^{2} b^{3}$

- $a^{2} b^{3}$

2. What is the sum of
$a^{2} b+5 a^{2} b-3 a^{2} b+4 a^{2} b-6 a^{2} b-a^{2} b ? \quad$ Ans. $2 a^{2} b$.
3. What is the sum of
$12 a^{3} b c^{2}-4 a^{3} b c^{2}+6 a^{3} b c^{2}-8 a^{3} b c^{2}+11 a^{3} b c^{2}$? Ans. $17 a^{3} b c^{2}$.
4. What is the sum of
$4 a^{2} b-8 a^{2} b-9 a^{2} b+11 a^{2} b ? \quad A n s .-2 a^{2} b$
5. What is the sum of
$7 a b c^{2}-a b c^{2}-7 a b c^{2}+8 a b c^{2}+6 a b c^{2} ?$
Ans. $13 a b c^{2}$.
6. What is the sum of
$9 c b^{3}-5 c b^{3}-8 a c^{2}+20 c b^{3}+9 a c^{2}-24 c b^{3} ? \quad$ Ans. of $a c^{2}$.
To add any Algebraic Quantities.
7. 8. What is the sum of $3 a, 5 b$, and $-2 c$? Write the quantities, thus,

$$
3 a+5 b-2 c
$$

which denotes their sum, as there are no similar terms.
2. Let it be required to find the sum of the quantities,

$$
\begin{array}{r}
2 a^{2}-4 a b \\
3 a^{2}-3 a b+1 b^{2} \\
\frac{2 a b-5 b^{2}}{5 a^{2}-5 a b-4 b^{2}}
\end{array}
$$

[^5]From the preceding examples, we have, for the addition of algebraic quantities, the following

RULE.

I. Write the quantities to be added, placing similar terns in the same column, and giving to each its proper sign:
II. Add up each column separately and then annex the dissimilar terms with their proper signs.

EXAMPLES.

1. Add together the polynomials,

$$
3 a^{2}-2 b^{2}-4 a b, 5 a^{2}-b^{2}+2 a b, \text { and } 3 a b-3 c^{2}-2 b^{0}
$$

The term $3 a^{2}$ being similar to $5 a^{2}$, we write $8 a^{2}$ for the result $3 d^{2}-4 a b-2 b^{3}$ of the reduction of these two terms, at the same time slightly crossing them, as in the first term.

$$
\left\{\begin{array}{l}
3 a^{2}-4 a b-2 b^{2} \\
5 b^{2}+2 b^{2} b-b^{2} \\
\quad+3 b^{2}-2 b^{2}-3 b^{3} \\
8 a^{2}+c b-5 b^{2}-3 c^{3}
\end{array}\right.
$$

Passing then to the term - $4 a b$, which is similar to $+2 a b$ and $+3 a b$, the three reduce to $+a b$, which is placed after $8 a^{2}$, and the terms crossed like the first term. Passing then to the terms involving b^{2}, we find their sum to be $-5 b^{2}$, after which we write $-3 c^{2}$.

The marks are drawn across the terms, that none of them may be overlooked and omitted.

$$
\begin{array}{rcc}
\text { (2.) } & \text { (3.) } & \text { (4.) } \tag{2.}\\
-\frac{7 a b c+9 a x}{-3 a b c-3 a x} & 8 a x+3 b & 12 a-6 c \\
4 a b c+6 a x & \frac{5 a x-9 b}{13 a x-6 b} & -\frac{3 a-9 c}{9 a-15 a}
\end{array}
$$

Note.-If $a=5, b=4, c=2, x=1$, what are the numerical values of the several sums above found?
(5.)
(6.)
(7.)

$-\frac{3 h+8 c-2 f-9 g+5 x}{19 h+5 c-9 f-6 g+5 x}$
$7 x-9 y+5 z+3-9$
$-x-3 y-8-g$
$-x+y-3 z+1+7 g \quad-3 a+b \quad+2 d$
$-2 x+6 y+3 z-1-g \quad-6 b-3 c+3 d$
$3 x-5 y+5 z-5+4 y$
14. Add together $-b+3 c-d-115 e+6 f-5 g, 3 b$
$-2 c-3 d-e+27 f, 5 c-8 d+3 f-7 g,-7 b 5-6 c$
$+17 d+9 e-5 f+11 g,-3 b-5 d-2 e+6 f-9 g+h$.

$$
\text { Ans. }-8 b-109 e+37 f-10 g+h .
$$

15. Add together the polynomials $7 a^{2} b-3 a b c-8 b^{2} c$
$-9 c^{3}+c d^{2}, 8 a b c-5 a^{2} b+3 c^{3}-4 b^{2} c+c d^{2}$, and $4 a^{2} b$
$-8 c^{3}+9 b^{2} c \div 3 d^{3}$.
Ans. $6 a^{2} b+5 a b c-3 b^{2} c-14 c^{3}+2 c d^{2}-3 d^{3}$.
16. What is the sum of, $5 a^{2} b c+6 b a-4 a f,-3 a^{2} b c$ $-0 b x+14 a f,-a f+9 b x+2 a^{2} b c,+6 a f-8 b x+6 a_{2}^{2} b c ?$ Ans. $10 a^{2} b c+b x+15 a f$.
17. What is the sum of $a^{2} n^{2}+3 a^{3} m+b,-6 a^{2} n^{2}$ $-6 a^{3} m-b,+9 b-9 a^{3} m-5 a^{2} n^{2}$?

$$
\text { Ans. }-10 a^{2} n^{2}-12 a^{3} m+9 b
$$

18. What is the sum of $4 a^{3} b^{2} c-16 a^{4} x-9 a x^{3} c^{2}$ $\therefore 6 a^{3} b^{2} c-6 a x^{3} d+17 a^{4} x,+16 a x^{3} d-a^{4} x-9 a^{3} b^{2} c$?

$$
\text { Ans. } a^{3} b^{2} c+a x^{3} c l .
$$

19. What is the sum of $-7 g+3 b+4 g-2 b+3 g$ $-3 b+2 b$? Aus. 0.
20. What is the sum of, $a b+3 x y-m-n,-6 x y$ $-3 m+11 n+c c l,+3 x y+4 m-10 n+f g ?$

$$
A n s . a b+c a l+f g
$$

21. What is the sum of $4 x y+n+6 a x+9 a m$, - (jxy $+6 n-6 a x-8 a m, 2 x y-7 n+a x-a m ?$ Ans. $+4 x$.

(22).	(23).	(24).
$2(a+b)$	$5\left(a^{2}-c^{2}\right)$	$9\left(c^{3}-a f^{3}\right)$
$3(a+b)$	$-4\left(a^{2}-c^{2}\right)$	$7\left(c^{3}-a f^{3}\right)$
$\frac{2(a+b)}{7(a+l)}$	$-\frac{1\left(a^{2}-c^{2}\right)}{0}$	$-\frac{10\left(c^{3}-a f^{3}\right)}{6\left(c^{3}-a f^{3}\right)}$

Note. The quantity within the parenthesis must be regarded as a single quantity.
25. Add $3 a\left(g^{2}-h^{2}\right)-2 a\left(g^{2}-l^{2}\right)+4 a\left(g^{2}-l^{2}\right)$ $+8 a\left(g^{2}-h^{2}\right)-2 a\left(g^{2}-\iota^{2}\right) . \quad$ Ans. $11 a\left(g^{2}-h^{2}\right)$.
26. Add $3 c\left(a^{2} c-b^{2}\right)-O c\left(a^{2} c-b^{2}\right)-7 c\left(a^{2} c-b^{2}\right)$ $+15 c\left(a^{2} c-b^{2}\right)+c\left(a^{2} c-b^{2}\right)$. Ans. $3 c\left(a^{2} c-b^{2}\right)$.
34. In algebra, the term auld does not always, as in arithmetic, convey the idea of angmentation; nor the term sum, the idea of a number numerically greater than any of the nmmbers added. For, if to a we add $-b$, we have, $a-\varepsilon$, which is, arithmetically speaking, a difference between the number of units expressed by a, and the number

[^6]of units expressed by b. Consequently, this result is un merically less than a. To distinguish this sum from an arithmetical sum, it is called the aigebraic sum.

SUBTRACTION.

35. Subtraction is the operation of finding the difference between two algebraic quantities.
36. The quantity to be subtracted is called the Subtrahend; and the quantity from which it is taken, is called the Minuend.
The difference of two quantities, is such a quantity as added to the subtrahend will give a sum equal to the minnend.

EXAMPLES.

1. From $17 a$ take $6 a$.

In this example, $17 a$ is the minuend, and $6 a$
oremantox.
$17 a-$
he subtrahend: the difference is $11 a$; because,
$1 a$, added to $6 a$, gives $17 a$.
The difference may be expressed by writing the quantities thus:

$$
17 a-6 a=11 a ;
$$

in which the sign of the subtrahend is changed from + to -.
2. From $15 x$ take $-9 x$.

The difference, or remainder, is such a quantity, as being added to the subtrahend, $-9 x$, will give the minuend, $15 x$. That quantity is $24 x$, and may be found by simply changing the sign
oferation $15 x$
$=\frac{-3 a}{240}$
of the subtrahend, and adding. Whence, we may write,

$$
15 x-(-9 x)=24 x
$$

3. From 10ax take $a-b$.

The difference, or remainder, is such a quantity, as added to $a-b$, will give the minuend, $10 a x$: what is that gaaro tity?

If you change the signs of both terms of the subtrahend, and add, you have, $10 a x-a+b$. Is this the true remainder? Certainly. For, if you add the remainder to the subtrahend, $a-b$, you obtain

OPEAAT10 H.
10 ax
Rem. $10 a x-a+b$ add the minuend, $10 a x$.

It is plain, that if you change the signs of all the terms of the subtrahend, and then add them to the minuend, and to this result add the given subtrahend, the last sum can be no other than the given minuend; hence, the first result is the true difference, or remainder (Art. 36).

Hence, for the subtraction of algebraic quantities, we have the fullowing

RULE.

I. Write the terms of the subtrahend under those of the ninuend, placing similar terms in the same column:
II. Conceive the signs of all the terms of the subtraliend to be changed from + to - , or from - to + , and thess procced as in Aadition.

EXAMPLES OF MONOMIALS.

	(1).	(2).	(3).
From	$3 a b$	$6 a x$	$9 a b c$
take	$\frac{2 a b}{a b}$	$\frac{3 a x}{3 a x}$	$\frac{7 a b c}{2 u b c_{0}}$

	(4).	(5).	(0).
From	$16 a^{2} b^{2} c$	$17 a^{3} b^{3} c$	$24 a^{2} b^{2} x$
take	$\frac{9 a^{2} b^{2} c}{7 a^{2} b^{2} c}$	$\frac{3 a^{3} b^{3} c}{14 a^{3} b^{3} c}$	$\frac{7 a^{2} b^{2} x}{17 a^{2} b^{2} x}$
Rem.	(7).	(8).	(9).
	$3 a x$	$4 a b x$	$2 a m$
From	$8 c$	$9 a c$	$a x$
take	$-\frac{8 c}{}$	$\frac{a x-8 c}{4 a b x-9 a c}$	$\frac{2 a m-a x}{\text { Rem. }}$

10. From $9 a^{2} b \overrightarrow{0}$ take $3 a^{2} b^{2}$.
11. From $16 a^{2} x y$ take - $15 a^{2} x y$.
12. From $12 a^{4} y^{3}$ take $8 a^{4} y^{3}$.

Ans, $6 a^{2} b^{2}$.
13. From $19 a^{5} x^{8} y$ take $-18 a^{5} x^{8} y$. Ans. 31 $a^{2} x y$.
14. From $3 a^{2} b^{3}$ take $3 a^{3} b^{2}$.
15. From $7 a^{2} b^{4}$ take $6 a^{4} b^{2}$.

Ans. $3 a^{2} b^{3}-3 a^{3} b^{2}$.
16. From $3 a b^{2}$ take $a^{2} b^{5}$.

Ans. $7 a^{2} b^{4}-6 a^{4} b^{2}$.
17. From $x^{2} y$ take $y^{2} x$.
18. From $3 x^{2} y^{3}$ take $x y$. Ans. $3 a b^{2}-a^{2} b^{5}$.
Ans. $x^{2} y-y^{2} x$. Ans. $3 x^{2} y^{3}-x y$.
19. From $8 a^{2} y^{3} x$ take $x y z$. Ans. $8 a^{2} y^{3} x-x y z$.
20. From $9 a^{2} b^{3}$ take $-3 a^{2} b^{2}$.
21. From $14 a^{2} y^{2}$ take $-20 a^{2} y^{2}$.
22. From -- $24 a^{4} b^{5}$ take $16 a^{4} b^{5}$.
23. From $-13 x^{2} y^{4}$ take $-14 x^{2} y^{4}$.
24. From - $47 a^{3} x^{2} y$ take - $5 a^{3} x^{2} y$, Ans. - $42 a^{3} x^{2} y$.
25. From - $94 a^{2} x^{2}$ take $3 a^{2} x^{2}$.
26. From $a+x^{2}$ take $-y^{3}$.
27. From $\boldsymbol{x}^{3}+b^{3}$ take $-a^{3}-b^{3}$. Ans $2 a^{3}+2 b^{3}$
28. From $-16 a^{2} x^{3} y$ take $=19 a^{2} x^{3} y$. Ans. $+3 a^{2} x^{3} y$.
29. From $a^{2}-x^{2}$ take $\bar{e} a^{2}+x^{2}$.

Ans. $12 a^{2} b^{2}$.
Ans. $34 a^{2} y^{2}$.
Ans. $-40 a^{4} b^{3}$.
Ans. $x^{2} y^{4}$

Ans. - $97 a^{2} r^{2}$ Ans. $a+x^{2}+y^{3}$.

OENEIAL EXAMPLES.

(1.)

From $6 a c-5 a b+c^{2} \quad(1$.
$-\operatorname{take}(3 a c-13 a b+7 c)-3 a c-3 a b-7 c$
(2.)

From $\quad a x-a+3 b^{2}$
take $=9 a x+x+b^{2}$ Rem. $-3 a x-a+x+2 b^{2}$.
(4.)

From $5 a^{3}-4 a^{2} b+3 b^{2} c$ take $+2 a^{3}$ Y $^{-} 3 a^{2} b+8 b^{2} c$ Rem. $\quad 7 a^{3}-7 a^{2} b+11 b^{2} c$.
(3.)

$$
\begin{aligned}
& 6 y x-3 x^{2}+5 b \\
& -\frac{y x-3+c}{5 y x-3 x^{2}+3+5 b-a} .
\end{aligned}
$$

$$
\begin{equation*}
4 a b-c c l+8 a^{2} \tag{5.}
\end{equation*}
$$

$$
5 a b-4 c a l+3 a^{3}+5 b^{2}
$$

$$
-a b+3 \cdot c l-5 b^{2}
$$

6. From $a+8$ take $c-5$. Ans. $a-c+13$
7. From $C a^{2}-15$ take $9 a^{2}+30$. Ans. $-3 a^{2}-45$
8. From $6 x y-8 a^{2} c^{3}$ take $+7 x y+a^{2} c^{3}$. Ans. $13 x y-7 a^{2} c^{3}$
9. From $a+c$ take $-a-c$. Ans.' $2 \alpha+2 c$
10. From $4(a+b)$ take $2(a+b)$. Ans. $2(a+b)$
11. From $3(a+x)$ take $(a+x)$. Ans. $2(a+x)$
12. From $9\left(a^{2}-x^{2}\right)$ take $-2\left(a^{2}-x^{2}\right)$.

Ans. $11\left(a^{2}-x^{2}\right)$
13. From $6 a^{2}-15 b^{2}$ take $-3 a^{2}+9 b^{2}$.

Ans. $9 a^{2}-24 \delta^{2}$
14. From $3 a^{m}-2 b^{n}$ take $a^{m}-2 b^{n}$. Ans. $2 a^{m}$.
15. From $9 c^{2} m^{2}$ - t thake $4-7 c^{2} m^{2}$. Ans. $16 c^{2} m^{2}-8$.
10. From $6 a m+y$ take $3 a m-x$ Ans. $3 u m+x+y$
17. From $3 a x$ take $3 a x-y$. Ans. +3 .
13. From $-7 f+3 m-8 x$ take $\stackrel{+}{-} f f \pm 5 m \pm 2 x \mp$ $3 d+8$. Ans. $-f+8 m-6 x-3 d-8$.
19. From $-a-53+7 c+d$ take $4 b-c+2 d+2 \%$

$$
\text { Ans. }-a-9 b+8 c-d-2 k
$$

20. From $-3 a+b-8 c+7 e-5 f+3 h-7 x-13 y$ take $k+2 a-9 c+8 e-7 x+7 f-y-3 l+k$. Ans. $-5 a+b+c-e-12 f+3 h-12 y+31$.
21. From $2 x-4 a-2 b+5$ take $8-5 b+a+6 x$.

$$
\text { Ans. }-4 x-5 a+3 b-3 .
$$

22. From $3 a+b+\dot{c}-d-10$ take $c+2 a-d$.

$$
\text { Ans. } a+b-10 .
$$

23. From $3 a+b+c-d-10$ take $b-19+3 a$.

$$
\text { Ans. } c-d+9 .
$$

24. From $a^{3}+3 b^{2} c+a b^{2}-a b c$ take $b^{3}+a b^{2}+a b c$. Ans. $a^{3}+3 b^{2} c-b^{3}$.
25 From $12 x+6 a-4 b+40$ take $(4 b-3 a+4 x+$ $6 d-10$).

$$
\text { Ans. } 8 x+9 a-8 b-6 d+50
$$

26. From $2 x-3 a+4 b+6 c-50$ take $(9 a+x+6 b$ $-6 c \dashv 40$. Ans. $x-12 a-2 b+12 c-10$.
27. From $6 a-4 b-12 c+12 x$ take $(2 x-8 a+4 b$ -6c.) Ans. $14 a-8 b-6 c+10 x$.
28. In Algebra, the term difference does not always, as in Arithmetic, denote a number less than the minuend. For, if from a we subtract $-b$, the remainder will be $a+b$; and this is numerically greater than a. We distinguish between the two cases by calling this result the algebruic difference.
29. In Algebra, as in Arithmetic, docs the term difference denote a number less than the minuend? How are the results in the twe casce, distinguished from each other?
30. When a polynomial is to be subtracted from an algebrale quantity, we inclose it in a parenthesis, place the minus sign before it, and then write it after the minuend Thus, the expression,

$$
6 a^{2}-\left(3 a b-2 b^{2}+2 b c\right)
$$

indicates that the polynomial, $3 a b-2 b^{2}+2 b c$, is to le taken from $6 a^{2}$. Performing the operations indicated, by the rule for subtraction, we have the equivalent expression :

$$
6 a^{2}-3 a b+2 b^{2}-2 b c
$$

The last expression may be changed to the former, by changing the signs of the last three terms, inclosing them in a parenthesis, and prefixing the sign -. Thus,

$$
6 a^{2}-3 a b+2 b^{2}-2 b c=6 a^{2}-\left(3 a b-2 b^{2}+2 b c\right)
$$

In like manner any polynomial may be transformed, as indicated below :

$$
\begin{aligned}
7 a^{3}-8 a^{2} b-4 b^{2} c+6 b^{3} & =7 a^{3}-\left(8 a^{2} b+4 b^{2} c-6 b^{3}\right) \\
& =7 a^{3}-8 a^{2} b-\left(4 b^{2} c-6 b^{3}\right) \\
8 a^{3}-7 b^{2}+c-a & =8 a^{3}-\left(7 b^{2}-c+d\right) \\
& =8 a^{3}-7 b^{2}-(-c+d) \\
9 b^{3}-a+3 a^{2}-a & =9 b^{3}-\left(a-3 a^{2}+d\right) \\
& =9 b^{3}-a-\left(-3 a^{2}+d\right) .
\end{aligned}
$$

Note.-The sign of every quantity is changed when it is placed within a parenthesis, and also when it is brought out.
40. From the preceding principles, we have,

$$
\begin{aligned}
& a-(+b)=a-b ; \text { and } \\
& a-(-b)=a+b
\end{aligned}
$$

[^7]The sign immediately preceding b is called the sign of the quantity ; the sign preceding the parenthesis is called the sign of operation; and the sign resulting from the combin. ation of the signs, is called the essential sign.

When the sign of operation is different from the sign of the quantity, the essential sign will be - ; when the sign of operation is the same as the sign of the quantity, the essential sign will be + .

MULTIPLICATION.

41. 42. If a man earus a dollars in 1 day, how much will he earn in 6 days?

Analysis.-In 6 days he will earn six times as much as in 1 day. If he carns a dollars in 1 day, in 6 days he will earn $6 a$ dollars.
2. If one hat costs d dollars, what will 9 hats cost? Ans. 9cl dollars.
3. If 1 yard of cloth costs c dollars, what will 10 yards cost?

Ans. $10 c$ dollars.
4. If 1 cravat costs b cents, what will 40 cost?

Ans. $40 b$ cents.
5. If 1 pair of gloves costs b cents, what will a pairs cost?

Analysis.-If 1 pair of gloves cost b cents, a pairs will cost as many times b cents as there are units in a : that is, b taken a times, or $a b$; which denotes the product of b by a, or of a by b.
resulting sign called? When the sign of operation is different from the sign of the quantity, what is the essential sign? When the sign of operation is the same as the sign of the quantity, what is the essential sign
41. What is Multiplication? What is the quantity to be multiplied called? What is that called by which it is multiplied? What is the result called?

Multiphication is the operation of finding the product of tico quentities.

The quantity to be multiplied is called the Multiplicand; that by which it is multiplied is called the Multiplier ; and the result is ealled the Product. The Multiplier and Multiplicand are called Factors of the Product.
6. If a man's income is $3 a$ dollars a week, how much will he receive in $4 b$ weeks?

$$
3 a \times 4 b=12 a b
$$

If we suppose $a=4$ dollars, and $b=3$ weeks, the product will be 144 dollars.

Note.-It is proved in Arithmetic (Davies' School, Art. 48. University, Art. 50), that the product is not altered by chang. ing the arrangement of the factors; that is,

$$
12 a b=a \times b \times 12=b \times a \times 12=a \times 12 \times b
$$

multiplication of posttive monomials.

42. Multiply $3 a^{2} b^{2}$ by $2 a^{2} b$. We write,

$$
\begin{aligned}
3 a^{2} b^{2} \times 2 a^{2} b & =3 \times 2 \times a^{2} \times u^{2} \times b^{2} \times b \\
& =3 \times 2 a a a b b b
\end{aligned}
$$

wh which a is a factor 4 times, and b a factor 3 times; hence (Art. 14),

$$
3 a^{2} b^{2} \times 2 a^{2} b=3 \times 2 a^{4} b^{3}=6 a^{4} b^{3}
$$

in which we multiply the coefficients together, and add the exponents of the like letters.

The product of any two positive monomials may be found in like manner; hence the

RULE.

I. Multiply the coefficients together for a new coefficient:
II. Write after this coefficient all the letters in both mono-

[^8]mitals, giving to each letter an exponent equal to the sum of its exponents in the two factors.

EXAMPLES.

1.

$8 a^{2} b c^{2} \times 7 a b d^{2}=56 a^{3} b^{2} c^{2} d^{2}$.
2.

3

$$
21 a^{3} b^{2} c d \times 8 a b c^{3}=168 a^{4} b^{3} c^{4} d
$$

$4 a b c \times 7 d f=28 a b c d f$.
\(\left.\begin{array}{ccc}Multiply

by \& \begin{array}{c}3 a^{2} b

\frac{2 a^{2} b}{6 a^{4} b^{2}}\end{array} \& \frac{12 a^{2} x}{144 a^{2} x^{3} y}\end{array}\right]\)| $6 x y z$ |
| :---: |
| (7.) |

10, Multiply $5 a^{3} b^{2} x^{2}$ by $6 c^{5} x^{6}$.
Ans. $30 a^{3} b^{2} c^{5} w^{8}$.
11. Multiply $10 a^{4} b^{5} c^{8}$ by $7 a c d$.

Ans. $70 a^{5} b^{5} c^{9} d$.
12. Multiply $36 a^{8} b^{7} c^{6} d^{5}$ by $20 a b^{2} c^{3} d^{4}$. Ans. $720 a^{9} b^{9} c^{9} d^{9}$
13. Multiply $5 a^{m}$ by $3 a b^{n}$.
14. Multiply $3 a^{m} b^{3}$ by $6 a^{2} b^{n}$.
15. Multiply $6 a^{m} b^{n}$ by $9 a^{5} b^{7}$.
16. Multiply $5 a^{m} b^{n}$ by $2 a^{p} b^{q}$.
17. Multiply $5 a^{m} \cdot b^{2} c^{2}$ by $2 a b^{n} c$. Ans. $10 a^{m+1} b^{n+2} c^{3}$.
18. Multiply $6 a^{2} b^{m} c^{n}$ by $3 a^{3} b^{2} c^{2}$. Ans. $18 a^{5} b^{m+2} c^{n+2}$.
19. Multiply $20 a^{5} b^{5} c d$ by $12 a^{2} x^{2} y$. Ans. $240 a^{7} b^{5} c d x^{2} y$.
20. Multiply $14 a^{4} b^{6} d^{4} y$ by $20 a^{3} c^{2} x^{2} y$. A. $280 a^{7} b^{6} c^{2} d^{4} x^{2} y^{2}$
21. Multiply $8 a^{3} b^{3} y^{4}$ by $7 a^{4} b x y^{5}$.

Ans. $56 a^{7} b^{4} x y^{9}$
22. Multiply $75 a x y z$ by $5 a^{5} b c d x^{2} y^{2}$. Ans. $375 a^{6} b c d x^{3} y^{3} z_{\text {. }}$
23. Multiply $64 a^{3} m^{5} x^{4} y z$ ly $8 a b^{2} c^{3}$. A. $512 a^{4} b^{2} c^{3} m^{5} x^{4} y z$. 24. Multiply $9 a^{2} b^{2} c^{2} d^{3}$ by $12 a^{3} b^{4} c^{6}$. Ans. $108 a^{5} b^{6} c^{8} d^{3}$ - 25. Multiply $216 a b^{7} c^{3} d^{8}$ by $8 a^{3} b^{2} c^{5}$. Ans. $648 a^{4} b^{9} c^{8} d^{8}$ 20. Multiply $70 a^{8} b^{?} c^{4} l^{2} f^{\prime} x$ by $124^{7} b^{5} c^{3} c l x^{2} y^{3}$. Ans. $840 a^{15} b^{12} c^{7} d^{3} f^{2} x^{3} y^{3}$.

MLLTHLICATION OF POLYNOMIALS.

43. 44. Multiply $a-b$ by c.

It is required to take the difference between a and b, c times; or, to take $c, a-b$ times.

As we can not subtract b from c, we begin by taking a, c times, which is ac; but this product is too large by b taken c times, which is $b c$;

$$
\begin{aligned}
& a-b \\
& \frac{c}{a c-b c} \\
& 8-3=5 \\
& \frac{7 \cdot \cdot \cdot}{56-21=35}
\end{aligned}
$$ hence, the true product is $a c-b c$.

If a, b, and c, denote numbers, as $a=8, b=3$, and $c=7$, the operation may be written in figures.

Multiply $a-b$ by $c-c l$.
It is required to take $a-b$ as many times as there are units in $c-d$.

If we take $a-b, c$ times, we have $a c-b c$; but this product is too large by $a-b$ taken d times. But $a-b$ taken d times, is $a d-d b$. Sultracting this product from the preceding, by changing the signs of its terms (Art. 37), and we have,

$$
\begin{aligned}
& a-b \\
& \frac{c-d}{a c-b c} \\
& \frac{-a d+b d}{a c-b c-a d+b d} \\
& 3-3=5 \\
& \frac{7-2}{56-21}=5 \\
& \frac{-16+6}{53-37+6}=25
\end{aligned}
$$

$$
(a-b) \forall\left(\dot{x}_{x}-d=a b-b c-a d+b d\right.
$$

Hence, we have the following

RULE FORTME SIGNS.

I. When the fuctors have like signs, the sign of their procluct will be + :
II. When the factors have unlike signs, the sign of their ?rocluct will be - :

Tberefore, we say in Algebraic language, that + miltiplied by + , or - multiplied by - , gives + ; multiplied by + or + multiplied by - , gives - .

Hence, for the multiplication of polynomials, we have the following
RULE.

Multiply every term of the multiplicand by each term of the multiplier, observing that like signs give + , and unlike sians - ; then reduce the result to its simplest form.

EXAMPLES IN WHICH ALL TILE TERMS ARE PLL'S.

1. Multiply • . . . $3 a^{2}+4 a b+b^{2}$
by $\frac{2 a+5 b}{6 a^{3}+8 a^{2} b+2 a b^{2}}$
The product, after reducing,
$\frac{+15 a^{2} b+20 a b^{2}+5 b^{3}}{6 a^{3}+23 a^{2} b+22 a b^{2}+5 b^{3}}$
2. Note.-It will be found convenient to urrange the terms of the polynomials with reference to some letter; that is, to write them down, so that the highest power of that letter shall enter the first term; the next highest, the second term, and so on to the last term.
[^9]The letter with reference to which the arrangement is made, is called the leading letter. In the above example the leading letter is a. The leading letter of the product will always be the same as that of the factors.
2. Multiply $x^{2}+2 a x+a^{2}$ by $x+a$. Aus. $x^{3}+3 a x^{2}+3 a^{2} x+a^{3}$
3. Multiply $x^{3}+y^{3}$ by $x+y$.

$$
\text { Ans. } x^{4}+x y^{3}+x^{3} y+y^{4}
$$

4. Multiply $3 a b^{2}+6 a^{2} c^{2}$ by $3 a b^{2}+3 a^{2} c^{2}$.

$$
\text { Ans. } 9 a^{2} b^{4}+27 a^{2} b^{2} c^{2}+18 a^{4} c^{4} .
$$

5. Multiply $a^{2} b^{2}+c^{2} d$ liy $a+b$.

$$
\text { Ans. } a^{3} b^{2}+a c^{2} d+a^{2} b^{3}+b c^{2} d .
$$

6. Multiply $3 a x^{2}+9 a b^{3}+c d^{5}$ by $6 a^{2} c^{2}$.

$$
\text { Ans. } 18 a^{3} c^{2} x^{2}+54 u^{3} c^{2} b^{3}+6 a^{2} c^{3} d^{5}
$$

7. Mutiply $64 a^{3} x^{3}+2 \uparrow \iota^{2} x+9 a b$ by $8 a^{3} c d$.

$$
\text { Ans. } 512 a^{6} c d x^{3}+216 u^{5} c d x+72 a^{4} b c d
$$

G. Maltiply $a^{3}+3 a^{2} x+3 a x^{2}+x^{3}$ ly $a+x$.

$$
\text { Ans. } a^{4}+4 a^{3} x+6 a^{2} x^{2}+4 a x^{3}+x^{4} .
$$

9. Multiply $x^{2}+y^{2}$ by $x+y$.

$$
\text { Ans. } x^{3}+x y^{2}+x^{2} y+y^{3}
$$

10. Multiply $x^{5}+x y^{6}+7 a x$ by $a x+5 a x$. Ans. $6 a x^{6}+6 a x^{2} y^{6}+42 u^{2} x^{2}$
11. Multiply $a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$ by $a+b$. Ans. $a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+z^{3}$.
12. Mulitpls $x^{3}+x^{2} y+x y^{2}+y^{3}$ by $x+y$.

$$
\text { Ans. } x^{4}+2 x^{3} y+2 x^{2} y^{2}+2 x y^{3}+y^{4}
$$

13. Multiply $x^{3}+2 x^{2}+x+3$ by $3 x+1$.

$$
\text { Ans. } 3 x^{4}+7 x^{3}+5 x^{2}+10 x+3
$$

GENERAL EXAMPLES.

1. Multiply . : $2 a x-3 a b$
by $3 x-b$.
The product $6 a x^{2}-9 a b x$
becomes after $-2 a b x+3 a b^{2}$
reducing $6 a x^{2}-11 a b x+3 a b^{2}$.
2. Multiply $a^{4}-2 b^{3}$ by $a-b$.

$$
\text { Ans. } a^{5}-2 a b^{3}-a^{4} b+2 b^{4}
$$

3. Multiply $x^{2}-3 x-7$ by $x-2$.

$$
\text { Ane. } x^{3}-5 x^{2}-x+14
$$

4. Multiply $3 a^{2}-5 a b+2 b^{2}$ by $a^{2}-7 a b$. Ans. $3 a^{4}-26 a^{3} b+37 a^{2} b^{2}-14 a b^{3}$.
5. Multiply $b^{2}+b^{4}+b^{6}$ by $b^{2}-1$. Ans. $b^{8}-b^{2}$.
6. Multiply $x^{4}-2 x^{3} y+4 x^{2} y^{2}-8 x y^{3}+16 y^{4}$ by $x+2 y$. Ans. $x^{5}+32 y^{5}$.
7. Multiply $4 x^{2}-2 y$ by $2 y$. Ans. $8 x^{2} y-4 y^{2}$.
8. Multiply $2 x+4 y$ by $2 x-4 y$. Ans. $4 x^{2}-16 y^{2}$.
9. Multiply $x^{3}+x^{2} y+x y^{2}+y^{3}$ by $x-y$.

$$
\text { Ans. } x^{4}-y^{4} .
$$

10. Multiply $x^{2}+x y+y^{2}$ by $x^{2}-x y+y^{2}$.

$$
\text { Ans. } x^{4}+x^{2} y^{2}+y^{4}
$$

11. Multiply $2 a^{2}-3 a x+4 x^{2}$ by $5 a^{2}-6 a x-2 x^{2}$.

Ans. $10 a^{4}-27 a^{3} x+34 a^{2} x^{2}-18 a x^{3}-8 x^{4}$.
12. Multiply $3 x^{2}-2 x y+5$ by $x^{2}+2 x y-3$.

Ans. $3 x^{4}+4 x^{3} y-4 x^{2}-4 x^{2} y^{2}+16 x y-15$.
13. Multiply $3 x^{3}+2 x^{2} y^{2}+3 y^{2}$ by $2 x^{3}-3 x^{2} y^{2}+5 y^{3}$

$$
\text { Ans. }\left\{\begin{array}{l}
6 x^{6}-5 x^{5} y^{2}-6 x^{4} y^{4}+6 x^{3} y^{2}+ \\
15 x^{3} y^{3}-9 x^{2} y^{4}+10 x^{2} y^{5}+15 y^{5}
\end{array}\right.
$$

14. Multiply $8 a x-6 a b-c$ by $2 a x+a b+c$. Ans. $16 a^{2} x^{2}-4 a^{2} b x-6 a^{2} b^{2}+6 a c x-7 a b e-c^{2}$.
15. Multiply $3 a^{2}-5 b^{2}+3 c^{2}$ by $a^{2}-b^{2}$. Ans. $3 a^{4}-8 a^{2} b^{2}+3 a^{2} c^{2}+5 b^{4}-3 b^{2} c^{2}$.
16. $3 a^{2}-5 b d+c f$
$-5 a^{2}+4 b d-5 c f$.
Pro. red. $-15 \overline{5 a^{4}+37 a^{2} b c l-29 a^{2} c f^{\prime}-20 b^{2} d^{2}+44 b c d f^{\prime}-8 c^{2} f^{2}}$
17. Multiply $a^{m} x-a^{2} b^{2}$ by $a^{2} x^{n}$.

$$
\text { Ans. } a^{m+2} x^{n+1}-a^{4} b^{2} x^{n} .
$$

18. Multipls $a^{m}+b^{n}$ by $a^{m}-b^{n}$. Ans. $a^{2 m}-b^{2 n}$.
19. Multiply $a^{m}+b^{n}$ by $a^{m}+b^{n}$.

$$
\text { Ans. } a^{2 m}+2 a^{m} b^{n}+b^{2 n} .
$$

DIVISION.

4.5. Drvision is the operation of finding from two quantities a third, which being multiplied by the second, will produce the first.

The first is called the Dividend, the second the Divisor, and the third, the Quotient.

Division is the converse of Multiplication. In it, we have given the product and one factor, to find the other. The rules for Division are just the converse of those for Multiplication.

To divide one monomial by another.
46. Divide $72 a^{5}$ by $8 a^{3}$. The division is indicated, thus:

$$
\frac{72 a^{5}}{8 a^{3}} .
$$

The quotient must be such a monomial, as, being multiplied by the divisor, will give the dividend. Hence, the coefficient

[^10]of the quotient must be 9 , and the literal part a^{2}; for these quantities multiplied by $8 a^{3}$ will give $22 u^{5}$. Hence,
$$
\frac{72 u^{5}}{8 u^{3}}=9 u^{2}
$$

The coefficient 9 is oltained by dividing 72 by 3 ; and the literal part is found by giving to a, an exponent equal to 5 minus 3.

Hence, for dividing one monomial by another, we have the following

> R U L E.
I. Divide the coefficient of the dividend by the coefficient of the divisor, for a new coefficient :
II. Afier this coefficient vorite all the letters of the dividend, giving to each an exponent equal to the excess of its expa ponent in the dividend over that in the divisor.

SIGNS IN DIVISION.

4\%. Since the Quotient multiplied by the Divisor must produce the Dividend: and, since the product of two factors having the same sign will be + ; and the product of two factors having different signs will be - ; we conclude:

1. When the signs of the dividend and divisor are like, the sign of the quotient will be + .
2. When the signs of the dividend and divisor are unlike, the sign of the quotient will be - . Again, for brevity, we say,

$$
\begin{aligned}
& + \text { divided by }+ \text {, and - divided by }- \text {, give }+; \\
& \text { - divided by }+ \text {, and }+ \text { divided by }- \text {, give }- \\
& \frac{+a b}{+a}=+b ; \quad \frac{-a b}{-b}=+a ; \\
& \frac{-a b}{+a}=-b ;
\end{aligned}
$$

47. What is the rule for the signe, in division ?

EXAMPLES.

(1.)
$\begin{array}{ll}+\frac{18 a^{3} b^{2} c}{9 a^{3} b c}=+2 a^{2} b . & \frac{-15 a^{3} x^{2} y}{-5 a^{2} x}=+3 a x y . \\ & \\ +\frac{24 a^{4} b c}{3 a b c}=-8 a^{3} . & \frac{32 a^{8} b^{5} x^{5}}{-8 a^{2} b^{3} x}=-4 a c^{4} .\end{array}$
5. Divide $15 a x^{2} y^{3}$ by $-3 a y$.
6. Divide $84 a b^{3} x$ by $12 b^{2}$.
7. Divide $-36 a^{4} b^{5} c^{2}$ by $9 a^{3} b^{2} c$.
8. Divide $-39 a^{4} b^{4} x^{5}$ by $11 a^{3} b^{2} x^{4}$.
9. Divide $108 x^{6} y^{5} z^{3}$ by $54 x^{5} z$.
10. Divide $64 x^{7} y^{5} z^{6}$ by $-16 x^{5} y^{4} z^{5}$.
11. Divide $-96 a^{7} b^{6} c^{5}$ by $12 a^{2} b c$. Ans. $-8 a^{5} b^{5} c^{4}$.
12. Divide $-38 a^{4} b^{6} d^{4}$ by $2 a^{3} b^{5} d$. Ans. $-19 a b d^{3}$.
13. Divide $-64 a^{5} b^{4} c^{8}$ by $32 a^{4} b c$. Ans. $-2 a b^{3} c^{7}$.
14. Divide $128 a^{5} x^{6} y^{7}$ by $16 u x y^{4}$. . Ans. $8 u^{4} x^{5} y^{3}$.
15. Divide $-256 a^{4} b^{9} c^{8} d^{7}$ by $16 a^{3} b c^{6}$. Ans. $-16 a b^{8} c^{2} d^{7}$.
16. Divide $200 a^{8} m^{2} n^{2}$ by $-50 a^{7} \mathrm{mn}$. Ans. $-4 a m n$.
17. Divide $300 x^{3} y^{4} z^{2}$ by $60 x y^{2} z$. Ans. $5 x^{2} y^{2} z$. 18. Divide $27 a^{5} b^{2} c^{2}$ by $-9 a b c$. Ans. $-3 u^{4} b c$.
19. Divide $64 a^{3} y^{6} z^{8}$ by $32 a y^{5} z^{7}$. Ans. $2 u^{2} y z$. 20. Divide $-88 a^{5} b^{6} c^{8}$ by $11 a^{3} b^{4} c^{6}$. Ans. $-8 u^{2} b^{2} c^{2}$. 21. Divide $77 a^{4} y^{3} z^{4}$ by $-11 a^{4} y^{3} z^{4}$. Ans. - 7 . 22. Divide $84 a^{4} b^{2} c^{2} d$ by $-42 a^{4} b^{2} c^{2} d$.
23. Divide $-88 a^{6} b^{7} c^{6}$ by $8 a^{6} b^{6} c^{6}$.
24. Divide $16 x^{2}$ by $-8 x$.
25. Divide $-88 a^{n} b^{2}$ by $11 a^{m} b$. Ans. $-8 a^{n-m} b_{\text {. }}$

Ans. $-5 x^{2} y^{2}$. Ans. Tula. Ans. $-4 a b^{3} c$. Ans. - $9 u b^{2} x$.

$$
\text { Aus. } 2 x!y^{5} z^{2}
$$

Ans. - $4 x y z$.

$$
\text { Ans. - } 7
$$

$$
\text { Ans. -- } 2 .
$$

$$
\text { Ans. - } 11 a b
$$

$$
\text { Ans. }-2 x
$$

26. Divide ${ }^{7 / 7} a^{m} b^{n}$ by $-11 a^{2} b^{3}$. Ans. - $7 a^{m-2} b^{n-3}$

2\%. Divide $84 a^{8} b^{m}$ by $42 a^{n} b^{9}$. Ans. $2 a^{8-n} b^{m-9}$.
28. Divide $-88 a^{n} b^{7}$ by $8 a^{n} b^{m}$. Ans. $-11 a^{p-n} b^{1-m}$.
29. Divide $96 a z^{p}$ by $48 a^{n} z^{7}$. Ans. $2 a^{1-n} b^{p-q}$.
30. Divide $168 x^{a} y^{s}$ by $12 x^{n} y^{m}$. Ans. $14 x^{a-n} y^{b-m}$.
31. Divide $256 a b^{3} c^{2}$ by $16 a^{n} b^{m} c^{p}$. Ans. $16 a^{1-n} b^{-m} c^{2-p}$.
monomial fractions.
48. It follows fiom the preceding rules, that the exact division of monomials will be impossible:

1st. When the coefficient of the dividend is not exactly divisible by that of the divisor.

2 d . When the expanent of the same letter is greater in the divisor than in the dividend.
$3 d$. When the divisor contains one or more letters not found in the dividend.

In either case, the quotient will be expressed by a fraction.
A fraction is said to be in its simplest form, when the numerator and denominator do not contain a common factor.

For example, $12 a^{1} b^{2} c d$, divided by $8 a^{2} b c^{2}$, gives

$$
\frac{12 a^{4} b^{2} c}{8 a^{2} b c^{2}}
$$

which may be reduced by dividing the numerator and denominator by the common factors, $4, a^{2}, b$, and c, giving

Also,

$$
\frac{12 a^{4} b^{2} c l^{2}}{8 a^{2} b c^{2}}=\frac{3 a^{2} b c l}{2 c}
$$

$$
\frac{25 a^{5} b^{2} d^{3}}{15 a^{4} b^{6} d^{4}}=\frac{5 a}{3 b^{4} d}
$$

[^11]Hence, for the reduction of a monomial fraction to its sim. plest form, we have the following

I. ULE.

Suppress cvery factor, whetker numerical or literal, that is sommon to ooih terms of the fraction: the result will be the reduced fraction sought.

EXAMPLES.

(1.)
$\frac{48 a^{3} b^{2} c c^{2}}{36 a^{2} b^{3} c^{2} d e}=\frac{4 a d^{2}}{3 b c e}:$ and $\frac{37 a b^{3} c^{5} d}{6 a^{3} b c^{4} c^{2}}=\frac{37 b^{2} c}{6 a^{2} d} ;$
(3.)
(4.)
also, $\quad \frac{7 a^{2} b}{14 a^{3} b^{2}}=\frac{1}{2 a b}$: and $\frac{4 a^{2} b^{2}}{6 a b^{4}}=\frac{2 a}{3 b^{2}}$.
5. Divide $49 a^{2} b^{2} c^{6}$ by $14 c^{3} b c^{4}$.
6. Divide $6 a m n$ by $3 a b c$.

Ans. $\frac{7 b c^{2}}{2 a_{n}}$.
Ans. $\frac{2 m n}{b c}$. Ans. $\frac{3 m n^{2}}{2 e^{2} b^{2} c d}$.
8. Divide $28 a^{5} b^{6} c^{7} d^{8}$ by $16 a b^{9} c d^{\top} m$.

9 Divide $72 a^{3} c^{2} b^{2}$ by $12 a^{5} c^{4} b^{3} c t$. Ans. $\frac{7 \sigma^{4} c^{6} d}{4 b^{3} m}$ Ans. $\frac{6}{a^{2} c^{2} b d}$.
10. Divide $100 a^{8} b^{5} x m n$ by $25 a^{3} b^{4} d$.

$$
\text { Aiss. } \frac{4 a^{5} b x m n}{d}
$$

11. Divide $96 a^{5} b^{8} c^{9}$ lf by $75 a^{2} c x y$.

$$
\text { Ans. } \frac{32 a^{3} b^{8} c^{8} d f}{25 \approx y}
$$

12. Divide $85 m^{2} n^{3} f x^{2} y^{3}$ bȳ $15 \mathrm{am}^{4} n f$. Ans. $\frac{17 n^{2} x^{2} y^{3}}{3 u m^{3}}$
13. Divide $127 d x^{2} y^{2}$ by $16 d^{4} x^{4} y^{4}$.

Ans. $\frac{127}{10 c d x^{2} y^{2}}$
49. In dividing monomials, it often happens that the exponents of the same letter, in the dividend and divisor, are equal; in which case that letter may not appear in the quotient. It might, however, be retained by giving to it the exponent 0 .
If we have expressions of the form

$$
\frac{a}{a}, \frac{u^{2}}{a^{2}}, \frac{a^{3}}{a^{3}}, \frac{a^{4}}{a^{4}}, \frac{a^{5}}{u^{5}}, \quad \& \mathrm{c} .
$$

and apply the rule for the exponents, we shall have,

$$
\frac{a}{a}=a^{1-1}=a^{0}, \frac{a^{2}}{a^{2}}=a^{2-2}=a^{0}, \frac{u^{3}}{a^{3}}=u^{3-3}=a^{0}, \& \therefore .
$$

But since any quantity divided by itself is equal to 1 , it follows that,

$$
\frac{a}{a}=a^{0}=1, \frac{a^{2}}{a^{2}}=a^{2-2}=a^{0}=1, \& c . ;
$$

or, finally, if we designate the exponent by m, we have,

$$
\frac{a^{m}}{a^{m}}=a^{m-m}=a^{0}=1 ; \text { that is, }
$$

The 0 power of any quantity is equal to 1 : therefore,
Any quantity may be retained in a term, or introduced into a term, by giving it the exponent 0.

EXAMPLES.

1. Divide $6 a^{2} b^{2} c^{4}$ by $2 a^{2} b^{2}$.

$$
\frac{6 a^{2} b^{2} c^{4}}{2 a^{2} b^{2}}=3 a^{2-2} b^{2-2} c^{4}=3 a^{0} b^{0} c^{4}=3 c^{4}
$$

2. Divide $8 u^{4} b^{3} c^{5}$ by $-4 a^{4} b^{3} c$. Ans. $-2 u^{0} b^{0} c^{4}=-2 c^{4}$.
3. Divide $-32 m^{3} n^{2} x^{2} y^{2}$ by $4 m^{3} n^{2} x y$.

$$
A n s .-8 m^{0} n^{0} x y=-8 x y
$$

49. When the exponents of the same letter in the dividend and divisor are equal, what takes place? May the letter still be retained? With what exponent? What is the zero power of any quantity equal to?
50. Divide $-96 a^{4} b^{5} c^{n}$ by $-24 a^{4} b^{5}$. Ans. $4 a^{n} b^{n} \dot{c}^{n}=4 c^{n}$
51. Introduce a, as a factor, into $6 b^{5} c^{4}$. Ans. $6 a^{0} b^{5} c^{4}$.
52. Introduce $a b$, as factors, into $9 c^{5} d^{3}$. Ans. $9 a^{0} b^{0} c^{5} l^{n}$.
53. Introduce $a b c$, as factors, into $8 c l^{1} f^{m}$. A. $8 a^{0} b^{n} c^{n} d^{\prime} y^{\prime m}$.
54. When the exponent of any letter is greater in the divisor than it is in the dividend, the exponent of that letter in the quotient may be written with a negative sign. Thus,

$$
\frac{a^{2}}{a^{5}}=\frac{1}{a^{3}} ; \text { also, } \frac{a^{2}}{a^{5}}=a^{2-6}=a^{-3}, \text { by the rule } ;
$$

bence,

$$
a^{-3}=\frac{1}{a^{3}}
$$

Since, $\quad a^{-3}=\frac{1}{a^{3}}, \quad$ we have, $\quad b \times a^{-3}=\frac{b}{a^{3}}$;
that is, a in the numerator, with a negative exponent, is equal to a in the denominator, with an equal positive exponent; hence,

Any quantity having a negative exponent, is equal to the reciprocal of the same quantity with an equal positive exponent.

Hence, also,
Any fuctor may be transferred from the denominator to the numerator of a fraction, or the reverse, by changing the sign of its exponent.

EXAMPLES.

1. Divide $32 a^{2} b c$ by $16 a^{5} b^{2}$.

$$
\text { Ans. } \frac{32 a^{2} b c}{16 a^{5} b^{2}}=2 a^{-3} b^{-1} c=\frac{2 c}{a^{3} b} .
$$

50. When the exponent of any letter in the divisor is greater than in the dividend, how may the exponent of that letter be written in the quetient? What is a quantity with a negative expouent equal to? How may a factor be tranferred from the numerator in the denominator of a fraction?
51. $\frac{54 a^{2} b^{3} c}{9 a^{4} b^{5}}=6 a^{-2} b^{-2} c$.
52. Reduce $\frac{17 x^{2} y^{3} z}{51 x^{4} y^{3}}$. Ans. $\frac{x^{-2} z}{3}$, or $\frac{z^{\prime}}{3 x^{2}}$
53. In $5 a y^{-3} x^{-2}$, get rid of the negative exponents.

$$
\text { Ans. } \frac{5 a}{y^{3} x^{2}}
$$

5. In $\frac{4 a^{2} b^{3} x^{-2}}{3 a^{-3} b^{-5}}$, get rid of the negative exponents.

$$
\text { Ans. } \frac{4 a^{i} b^{8}}{3 x^{2}}
$$

6. In $\frac{15 a^{-3} c^{-4} d^{-5}}{45 x^{-3} y^{-5} c^{-2}}$, get rid of the negative exponents.

$$
\text { Ans. } \frac{x^{3} y^{5}}{3 a^{3} c^{2} d^{0}}
$$

7. Reduce $\frac{-8 a^{-3} b^{5} c}{14 a^{2} b^{-5} c}$. Ans. $\frac{-4 a^{-5} b^{10} c^{0}}{7}$, or $\frac{-4 b^{10}}{7 a^{5}}$.
8. Reduce $72 a^{5} b^{2} \div 8 a^{6} b^{3}$. Ans. $9 a^{-1} b^{-1}$, or $\frac{9}{a b}$.
9. In $\frac{15 a^{-4} b^{6} c^{-1}}{5 a^{-2} b^{-1}}$, get rid of the negative exponents.

$$
\text { Ans. } \frac{3 b^{7}}{a^{2} c}
$$

10. Reduce $\frac{-15 a^{-5} b^{-5} c^{2}}{-5 a^{-6} b^{-7}}$.

Ans. $3 a b^{2} c^{2}$ -

To divide a polynomial by a monomial.
51. To divide a polynomial by a monomial:

Divide each term of the dividend, separately, by the divisor ; the algebraic sum of the quotients will be the quoclient sought.

EXAMPLES.

1. Divide $3 a^{2} b^{2}-a$ by a.

Arcs. $3 a b^{2}-1$,

[^12]2. Divide $5 a^{3} b^{2}-25 u^{4} b^{2}$ by $5 a^{3} b^{2}$. Ans. $1-5 u$.
3. Divide $35 a^{2} b^{2}-25 a b$ by $-5 a b$. Ans. -- $7 a b+5$
4. Divide $10 a b-15 a c$ by $5 a$. Ans. $2 b$ - $3 c$.
5. Divide $6 a b--8 a x+4 a^{2} y$ by $2 a$.

Ans. $3 b-4 x+2 a y$.
6. Divide $-15 a x^{2}+6 x^{3}$ by $-3 x$. Ans. $5 a x-2 x^{3}$.
7. Divide $-21 x y^{2}+35 a^{2} b^{2} y-7 c^{2} y$ by $-7 y$. Ans. $3 x y-5 a^{2} b^{2}+c^{2}$.
8. Divide $40 a^{8} b^{4}+8 a^{4} b^{7}-32 a^{4} b^{4} c^{4}$ by $8 a^{4} b^{4}$.

Ans. $5 u^{4}+b^{3}-4 c^{4}$

DIVISION OF POLYNOMIALS.

52. 53. Divide $-2 a+6 a^{2}-8$ by $2+2 a$.

$$
\begin{aligned}
& \quad \text { Dividenc. } \quad \text { Divisor. } \\
& \begin{array}{l}
6 a^{2}-2 a-8 \frac{\mid 2 a+2}{3 a-4} \\
\begin{array}{l}
6 a^{2}+6 a \\
-8 a-8 \\
-8 a-8 \\
0
\end{array} \\
\text { Quotient. }
\end{array} \text { Remainder. }
\end{aligned}
$$

We first arrange the dividend and divisor with reference to a (Art. 44), placing the divisor on the left of the dividend. Divide the first term of the dividend by the first term of the divisor ; the result will be the first term of the quotient, which, for convenience, we place under the divisor. The product of the divisor by this term $\left(6 a^{2}+6 a\right)$, being subtracted from the dividend, leaves a new dividend, which may ne treated in the same way as the original one, and so on to the end of the operation.
52. What is the rule for dividing one polynomial by another? When is the division exact? When is it not exact?

Since all similar cases may be treated in the same way, we have, for the division of polynomials, the following

RULE.

I. Arrange the dividend and divisor with reference to the same letter:
II. Divide the first term of the dividend by the first term of the divisor, for the first term of the quotient. Multiply the clivisor by this term of the quotient, and subtract the product from the dividend:
III. Divide the first term of the remainder by the first term of the divisor, for the second term of the quotient. Multiply the divisor by this term, and subtract the product from the first remainder, and so on:
IV. Continue the operation, until a remainder is found equal to 0 , or one whose first term is not divisible by that of the divisor.

Note.-1. When a remainder is found equal to 0 , the division is exact.
2. When a remainder is found whose first term is not divisibie by the first term of the divisor, the exact division is impossible. In that case, write the last remainder after the quotient found, placing the divisor under it, in the form of a fraction.

> SECOND EXAMPLE.

Let it be required to divide
$51 a^{2} b^{2}+10 a^{4}-48 a^{3} b-15 b^{4}+4 a b^{3}$ by $4 a b-5 a^{2}+3 b^{2}$.
We first arrange the dividend and divisor with reference to a.

Dividend.
 Divisor.

$$
\begin{gathered}
10 a^{4}-48 a^{3} b+51 a^{2} b^{2}+4 a b^{3}-15 b^{4} \\
+10 a^{4}-8 a^{3} b-6 a^{2} b^{2} \\
\hline-40 a^{3} b+57 a^{2} b^{2}+4 a b^{3}-15 b^{4} \\
\frac{-40 a^{3} b+32 a^{2} b^{2}+24 a b^{3}}{25 a^{2} b^{2}-20 a b^{3}-15 b^{4}} \\
25 a^{2} b^{2}-20 a b^{3}-15 b^{4}
\end{gathered}
$$

$$
\frac{\left.\begin{array}{l}
x^{4}+x^{3} y+x^{2} y+x y^{2}-2 y \tag{3.}\\
x^{4}+x^{3} y
\end{array} \right\rvert\, \frac{x+y}{x^{3}+x y}-\frac{2 y}{x+y}}{\begin{array}{l}
+x^{2} y+x y^{2} \\
+x^{2} y+x y^{2}
\end{array}}
$$

Here the division is not exact, and the quoticnt is fractional.

$$
\begin{align*}
& \left.\begin{array}{l}
1+a \\
\frac{1-a}{}-2 a \\
+2 a
\end{array} \right\rvert\, \frac{1-a}{+2 a+2 a^{2}}+2 a^{3}+, \& c . \tag{4.}\\
& \begin{aligned}
&+2 a-2 a^{2} \\
&+2 a^{2} \\
&+2 a^{2}-2 a^{3} \\
&+2 a^{3}
\end{aligned}
\end{align*}
$$

In this example the operation does not terminate. It may be continued to any extent.

1. Divide $a^{2}+2 a x+x^{2}$ by $a+x$. Ans. $a+\infty$
2. Divide $a^{3}-3 a^{2} y+3 a y^{2}-y^{3}$ by $a-y$.

$$
\text { Ans. } a^{2}-2 a y+y^{2}
$$

3. Divide $24 a^{2} b-12 a^{3} c b^{2}-6 a b$ by $-6 a b$.

$$
A n s-4 a+2 a^{2} c b+1 \dot{x}
$$

4. Divide $6 x^{4}-96$ by $3 x-6$.

$$
\text { Ans. } 2 x^{3}+4 x^{2}+8 x+16
$$

- 5. Divide $a^{5}-5 a^{4} x+10 a^{3} x^{2}-10 a^{2} x^{3}+5 a x^{4}-x^{5}$ by $a^{2}-2 a x+x^{2}$. Ans. $a^{3}-3 a^{2} x+3 a x^{2}-x^{3}$.
, 6. Divide $48 x^{3}-76 a x^{2}-64 a^{2} x+105 a^{3}$ by $2 x-3 a$. Ans. $24 x^{2}-2 a x-3 \overline{5} \iota^{2}$.
7 Divide $y^{6}-3 y^{4} x^{2}+3 y^{2} x^{4}-x^{6}$ by $y^{3}-3 y^{2} x+$ $3 y x^{2}-x^{3} . \quad$ Aus. $y^{3}+3 y^{2} x+3 y x^{2}+x^{3}$.

8. Divide $64 a^{4} b^{6}-25 a^{2} b^{4}$ by $8 a^{2} b^{3}+5 a b^{4}$.

$$
\text { Ans. } 8 a^{2} b^{3}-5 a b^{3}
$$

9. Divide $6 a^{3}+23 a^{2} b+22 a b^{2}+5 b^{3}$ by $3 a^{2}+4 a b+b^{2}$. Ans. $2 a+5 b$.
10. Divide $6 a x^{6}+6 a x^{2} y^{6}+42 u^{2} x^{2}$ by bax $+\sqrt{5}$ ad

$$
A u s x^{5}+x y^{6}+7 \varphi x=
$$

11. Divide $-15 a^{4}+37 a^{2} b d-29 a^{2} c \cdot f-20 b^{2} d^{2}+44 b c r f f$
$-8 c^{2} f^{2}$ by $3 u^{2}-5 b d+c f . \quad$ Aus. $-5 u^{2}+4 b c l-8 c f$.
12. Divide $x^{4}+x^{2} y^{2}+y^{4}$ by $x^{2}-x y+y^{2}$.

Aus. $x^{2}+x y+y^{2}$.
13. Divide $x^{4}-y^{4}$ by $x-y$.

$$
\text { Aus. } x^{3}+x^{2} y+x y^{2}+y^{3}
$$

14. Divide $3 a^{4}-8 a^{2} b^{2}+3 u^{2} c^{2}+5 b^{4}-3 b^{2} c^{2}$ by $a^{2}-b^{2}$

$$
\text { Ans. } 3 u^{2}-5 b^{2}+3 c^{2}
$$

15. Divide $6 x^{6}-5 x^{5} y^{2}-6 x^{4} y^{4}+6 x^{3} y^{2}+15 x^{3} y^{3}-9 x^{2} y^{4}$ $+10 x^{2} y^{3}+15 y^{5}$ by $3 x^{3}+2 x^{2} y^{2}+3 y^{2}$.

$$
\text { Ans. } 2 x^{3}-3 x^{2} y^{2}+5 y^{3}
$$

16. Divide $-c^{2}+16 u^{2} x^{2}-7 a b c-4 a^{2} b x-6 \iota^{2} b^{2}+6 a c x$ by $8 a x-6 a b-c$. Arcs. $2 a x+a b+c$.
17. Divide $3 x^{4}+4 x^{3} y-4 x^{2}-4 x^{2} y^{2}+16 x y-15$ by $2 x y+x^{2}-3$.

$$
\text { Aus. } 3 x^{2}-2 x y+5
$$

18. Divide $x^{5}+3$ In y^{5} by $x+2 y$.

$$
\text { Aus. } x^{4}-2 x^{3} y+4 x^{2} y^{2}-8 x y^{3}+16 y^{4} .
$$

19. Divide $3 u^{4}-26 u^{3} b-14 a b^{3}+37 a^{2} b^{2}$ by $2 b^{2}-5 a b$ $+3 a^{2}$.

Aıs. $a^{2}-7 u b$.
20. Divide $a^{4}-b^{4}$ by $a^{3}+a^{2} b^{\circ}+a b^{2}+b^{3}$.

Als. $a-b$
21. Divide $x^{3}-3 x^{2} y+y^{3}$ by $x+y$.

$$
\text { Ans. } x^{2}-4 x y+4 y^{2}-\frac{3 y^{3}}{x+y}
$$

28. Divide $1+2 a$ by $1-a-a^{2}$.

Ans. $1+3 a+4 a^{2}+{ }^{*} a^{3}+$, \&c. α

CHAPTER III.

USRFUL EORMULAS. FACTORING. GREATEST COMMON DIVISOR. LEAST COMMON MULTIPLE.

USEFUL FORMULAS.

53. A Formula is an algebraic expression of a general rule, or principle.
Formulas serve to shorten algebraic operations, and are also of much use in the operation of factoring. When translated into common language, they give rise to practical rules.

The verification of the following formulas affords additional exercises in Multiplication and Division.
54. To form the square of $a+b$, we have,

$$
(a+b)^{2}=(a+b)(a+b)=a^{2}+2 a b+b^{2}
$$

That is,
The square of the sum of any two quantities is equal to the square of the first, plus twice the product of the first by the second, phus the square of the second.

1. Find the square of $2 a+3 b$. We have from the rule,

$$
(2 a+3 b)^{2}=4 a^{2}+12 a b+9 b^{2} .
$$

53. What is a formula? What are the uses of formulas?
54. What is the square of the sum of two quantities equal to?
55. Find the square of $5 a b+3 a c$.

$$
\text { Aus. } 25 a^{2} b^{2}+30 a^{2} b c+9 a^{2} c^{2}
$$

3. Find the square of $5 a^{2}+8 u^{2} b$.

$$
\text { Ans. } 25 a^{4}+80 a^{4} b+64 a^{4} b^{2}
$$

4. Find the square of $6 a x+9 a^{2} x^{2}$.

$$
\begin{equation*}
\text { Ans. } 36 a^{2} x^{2}+108 a^{3} x^{3}+81 a^{4} x^{4} \tag{2.}
\end{equation*}
$$

55. To form the square of a difference, $a-b$, we have,

$$
(a-b)^{2}=(a-b)(a-b)=a^{2}-2 a b+b^{2}
$$

That is,
The square of the difference of any two quantities is equal to the square of the first, minus twice the product of the first by the second, phes the square of the second.

1. Find the square of $2 a-b$. We have,

$$
(2 a-b)^{2}=4 a^{2}-4 a b+b^{2}
$$

2. Find the square of $4 a c-b c$.

$$
\text { Ans. } 16 a^{2} c^{2}-8 a b c^{2}+b^{2} c^{2}
$$

3. Find the square of $7 a^{2} b^{2}-12 a b^{3}$.

Ans. $49 a^{4} b^{4}-168 a^{3} b^{5}+144 a^{2} b^{6}$.
(3.)
56. Multiply $a+b$ by $a-b$. We have,

$$
(a+b) \times(a-b)=a^{2}-b^{2} . \text { Hence, }
$$

The sum of tico quantities, multiplied by their differences, is equal in the difficrence of their squares.

1. Multiply $2 c+b$ by $2 c-b$.

Ans. $4 c^{2}-b^{2}$
2. Multiply $9 a c+3 b c$ by $9 a c-3 b c$. Ans. $81 a^{2} c^{2}-9 b^{2} c^{2}$
55. What is the square of the difference of two quantities equal to?
56. What is the sum of two quantities multiplied by their difference equal to ?
3. Multiply $8 a^{3}+7 a b^{2}$ by $8 a^{3}-7 a b^{2}$.

$$
\text { Ans. } 64 a^{6}-40 c^{2} b^{2} \psi
$$

(4.)
57. Multiply $a^{2}+a b+b^{2}$ by $a-b$. We have,

$$
\left(a^{2}+a b+b^{2}\right)(a-b)=a^{3}-b^{3}
$$

(5.)
58. Multiply $a^{2}-a b+b^{2}$ by $a+b$. We have,

$$
\left(a^{2}-a b+b^{2}\right)(a+b)=a^{3}+b^{3}
$$

(6.)
59. Multiply together, $a+b, a-b$, and $a^{2}+b^{2}$. We have,

$$
(a+b)(a-b)\left(a^{2}+b^{2}\right)=a^{4}-b^{4}
$$

60. Since every product is divisible by any of its factors, each formula establishes the principle set opposite its number.
61. The sum of the squares of any troo quantities, plus twice their product, is divisible by their sum.
62. The sum of the squares of any two quantities, minus twice their product, is divisible by the difference of the quantities.
63. The difference of the squares of any two quantities is clivisible by the sum of the quantities, and also by their difference.
64. The difference of the cubes of any two quantities is divisible by the difference of the quantities; also, by the sum of their squares, plus their procluct.
65. The sum of the cubes of any two quantities is tivisi

[^13]ble by the sum of the quantities; also, by the sum of thein squares minus their product.
6. The difference betucen the fourth poucers of any tino quantitics is divisille by the sum of the quantities, by their ditference, by the sum of their squares, and by the lifference of their squares.

FACTORING.

61. Factoring is the operation of resolving a quantity into factors. The principles employed are the converse of those of Multiplication. The operations of factoring are performed by inspection.
62. What are the factors of the polynomial

$$
a c+a b+a d
$$

We see, by inspection, that a is a common factor of all the tems; hence, it may be placed without a parenthesis, and the otner parts within; thus:

$$
a c+a b+a d=a(c+b+d)
$$

2. Find the factors of the polym nmial $a^{2} b^{2}+a^{2} d-a^{2} f$. Ans. $a^{2}\left(b^{2}+d-f\right)$.
3. Find the factors of the polynomial $3 a^{2} b-6 a^{2} b^{2}+b^{2} d$.

$$
A n s . b\left(3 \iota^{2}-6 \iota^{2} b+b d\right) .
$$

4. Find the factors of $3 a^{2} b-9 a^{2} c-18 a^{2} x y$.

$$
\text { Ans. } 3 a^{2}(b-3 c-6 x y)
$$

5. Find the factors of $8 a^{2} c x-18 a c x^{2}+2 a c^{5} y-30 a^{6} a^{9}$.

$$
\text { Ans. } 2 a c\left(4 a x-9 x^{2}+c^{4} y-15 \iota^{5} c^{8}\right)
$$

6. Factor $30 a^{4} b^{2} c-6 a^{3} b^{2} c^{3}+18 a^{2} b^{2} c^{2}$.

$$
\text { Ans. } 6 a^{3} b^{2}\left(5 n c-d^{3}+8 c^{2}\right)
$$

7. Factor $12 c^{4} b d^{3}-15 c^{3} d^{4}-6 c^{2} d^{3} f$.

$$
A n s .3 c^{2} d^{3}\left(4 c^{2} b-5 c d-2 f\right)
$$

01 What is factoring y
8. Factor $15 a^{3} b c f-10 a b c^{4}-25 a b c d$.

$$
\text { Ans. } 5 a b c\left(3 a^{2} f-2 u^{3}-5 d\right) .
$$

62. When two terms of a trinomial are squares, and positive, and the third term is equal to twice the product of their square roots, the trinomial may be resolved into factors by Formula (1).
63. Factor $a^{2}+2 a b+b^{2} \quad$ Ans. $(a+b)(a+b)$.
64. Factor $4 a^{2}+12 a b+9 \dot{b}^{2}$. \therefore Ans. $\left(2 a+3 z_{j},(2 a+3 b)^{\prime}\right.$
65. Factor $9 a^{2}+12 a b+4 b^{2}$. Ans. $(3 a+2 b)(3 a+2 b)$.
66. Factor $4 x^{2}+8 x+4 . \quad$ Ans. $(2 x+2)(2 x+2)$.
67. Factor $9 a^{2} b^{2}+12 a b c+4 c^{2}$.

$$
\text { Ans. }(3 a b+2 c)(3 a b+2 c) .
$$

6. Factor $16 x^{2} y_{i}^{2}+16 x y^{3}+4 y^{4}$.

$$
\text { Ans. }\left(4 x y+2 y^{2}\right)\left(4 x y+2 y^{2}\right) .
$$

63. When two terms of a trinomial are squares, and positive, and the third term is equal to minus twice their equare roots, the trinomial may be factored by Formula (2).
64. Factor $a^{2}-2 a b+b^{2}$. Ans. $(a-b)(a-b)$.
65. Factor $4 a_{-}^{2}-4 a b+b^{2}$. Ans. $(2 a-b)(2 a-b)$.
66. Factur $9 a^{2}-6 a c+c^{2}$. Ans. $(3 a-c)(3 a-c)$.
67. Factor $a^{2} x^{2}-4 a x+4$. Ans. $(a x-2)(a x-2)$
68. Factor $4 x^{2}-4 x y+y^{2}$. Ans. $(2 x-y)(2 x-y)$
69. When may a trinomial he factored?
70. When may a trinomial be factored by this method?
71. Factor $36 x^{2}-24 x y+4 y^{2}$.

Ans. $(6 x-2 y)(6 x-2 y)$.
64. When the two terms of a binomial are squares and have contrary signs, the binomial may lee factored by Formula (3).

1. Factor $4 c^{2}-b^{2}$. Ans. $(2 c+b)(2 c-b)$
2. Factor $81 a^{2} c^{2}-9 b^{2} c^{2}$.

Ans. $(9 a c+3 b c)(9 a c-3 b c)$.
3. Factor $64 a^{4} b^{4}-25 x^{2} y^{2}$.

$$
\text { Ans. }\left(8 a^{2} b^{2}+5 x y\right)\left(8 a^{2} b^{2}-5 x y\right)
$$

4. Factor $25 a^{2} c^{2}-9 x^{4} j^{?}$.

$$
\text { Ans. }\left(5 u c+3 x^{2} y\right)\left(5 u c-3 x^{2} y\right)
$$

5. Factor $36 a^{4} b^{4} c^{2}-9 x^{6}$.

$$
\text { Ans. }\left(6 a^{2} b^{2} c+3 x^{3}\right)\left(6 a^{2} b^{2} c-3 x^{3}\right)
$$

6. Factor $49 x^{4}-36 y^{4}$. Aus. $\left(7 x^{2}+6 y^{2}\right)\left(7 x-6 y^{2}\right)$.
6.5. When the two terms of a binomial are mulos, and have contrary sigus, the binomial may be faceotol liy Formula (\$).
7. Factor $8 a^{3}-c^{3}$. Ans. $(2 a-c)\left(4 a^{2}+2 c+c^{2}\right)$.
8. Factor $27 a^{3}-64$.

$$
\text { Ans. }(3 a-4)\left(9 a^{2}+121+16\right) .
$$

3. Factor $a^{3}-64 b^{3}$.

$$
\text { Ans. }(a-4 b)\left(a^{2}+4 a b+16 b^{2}\right)
$$

4. Factor $a^{3}-2 ヶ b^{3}$. Ans. $(a-3 b)\left(a^{2}+3 a b+9 b^{2}\right)$.
5. When may a hinominl be factored ?
B.5. When mar a binomial be festored by the method?
6. When the terms of a binomial are cubes and have like signs, the binomial may be factored by Formula (5).
7. Factor $8 a^{3}+c^{3}$. Ans. $(2 a+c)\left(4 a^{2}-2 a c+c^{2}\right)$.
8. Factor $27 u^{3}+64$.

Ans. $\quad(3 a+4)\left(9 a^{2}-12 a+16\right)$.
5: Factor $a^{3}+34 b^{3}$.
Ans. $(a+4 b)\left(a^{2}-4 a b+16 b^{2}\right)$.
4. Factor $a^{3}+27 b^{3}$. Ans. $(a+3 b)\left(a^{2}-3 a b+9 b^{2}\right)$.
67. When the terms of a binomial are 4th powers, and have contrary signs, the binomial may le fartored by Formula (6).

1 What are the factors of $a^{4}-b^{4}$?

$$
\text { Ans. }(a+b)(a-b)\left(a^{2}+b^{2}\right)
$$

2 What are the factors of $81 a^{4}-16 b^{+}$?

$$
\text { Ans. }(3 a+2 b)(3 u-2 b)\left(9 a^{2}+4 b^{2}\right) .
$$

3. What are the factors of $16 a^{4} b^{4}-81 c^{4} d^{4}$? $A \| s . \quad(2 a b+3 c c l)(2 \pi b-3 c d)\left(4 u^{2} b^{2}+9 c^{2} d^{2}\right)$.

GLEATEST COMMON DTVISOR.

68. A Common Cevisor of two quantitics, is a quantity that will divide them both without a remainder. Thus, $3 a^{2} b^{2}$, is a common divisor of $9 a^{2} b^{2} c$ and $3 a^{2} b^{2}-6 a^{3} b^{3}$.

[^14]69. A Simple or Prime Factor is one that camot be resolved into any other factors.
Every prime factor, common to two quantities, is a common divisor of those quantities. The continued produet of any number of prime factors, common to two quantities, is also a common divisor of those quantities.
70. The Greatest Comaron Divisor of two quantities, is the contimued product of all the prime factors which are common to both.
71. When both quantities can be resolved into primes factors, by the method of factoring already given, the greatest common divisor may be found by the following

RULE.

I. Resolve both quantities into their prime factors :
II. Find the continued product of all the factors which are common to both; it will be the greatest common dinisor required.

EXAMPLES.

1. Required the greatest common divisor of $75 a^{2} b^{2} c$ and 25abd. Factoring, we have,

$$
\begin{aligned}
75 a^{2} b^{2} c & =3 \times 5 \times 5 \dot{a} a b b c \\
25 a b c l & =5 \times 5 a b c l
\end{aligned}
$$

The factors, $5,5, a$ and b, are common; hence,

$$
5 \times 5 \times a \times b=25 a b
$$

is the divisnr sought.

[^15]
VERIFICATION.

$$
\begin{aligned}
75 a^{2} b^{2} c \div 25 a b & =3 a b c \\
25 a b d \div 25 a b & =d
\end{aligned}
$$

and since the quotients have no common factor, they cannot be further divided.
2. Required the greatest common divisor of $a^{2}-2 a b+$ b^{2} and $a^{2}-b^{2}$.

Ans. $a-b$
3. Required the greatest common divisor of $a^{2}+2 a b+$ b^{2} and $a+b$.

Ans. $a+b$
4. Required the greatest common divisor of $a^{2} x^{2}-4 a x$ +4 and $a x-2$. Ans. $a x-2$.
5. Find the greatest common divisor of $3 a^{2} b-9 a^{2} c$ $-i 8 a^{2} x y$ and $b^{2} c-3 b c^{2}-6 b c x y$. Ans. $b-3 c-6 x y$.
6. Find the greatest common divisor of $4 a^{2} c-4 a c x$ and $3 a^{2} g-3 a g x$. Ans. $a(a-x)$, or $a^{2}-a x$.
7. Find the greatest common divisor of $4 c^{2}-12 c x+9 x^{2}$ and $4 c^{2}-9 x^{2}$.

Ans. $2 c-3 x$.
8. Find the greatest common divisor of $x^{3}-y^{3}$ and $x^{2}-y^{2}$. Ans. $x-\%$
9. Find the greatest common divisor of $4 c^{2}+4 b c+b^{2}$ and $4 c^{2}-b^{2}$. Ans. $2 c+b$.
10. Find the greatest common divisor of $25 a^{2} c^{2}-9 x^{4} y^{4}$ and $5 a c d^{2}+3 d^{2} x^{2} y^{2}$.

Ans. $5 a c+3 x^{2} y^{2}$.
Note.-To find the greatest common divisor of three quantities. First find the greatest common divisor of two of them, and then the greatest common divisur between this result and the third.

1. What is the greatest common divisor of $4 a x^{2} y, 16 a b x^{2}$, and $24 a c x^{2}$? Ans, $4 a x^{2}$.
2. Of $3 x^{2}-6 x, 2 x^{3}-4 x^{2}$, and $x^{2} y-2 x y$? Ans. $x^{2}-2 x_{4}$
[^16]
LEAST COMMON MULTIPLE.

72. One quantity is a sulutiple of another, when it can be divided by that other without a remainder. Thus, $8 a^{2} b$, is a multiple of 8 , also of a^{2}, and of b. *
73. A quantity is a Common Multiple of two or moro quantities, when it ean be divided by each, separately, without a remainder. Thus, $24 a^{3} x^{3}$, is a common multiple of $6 a x$ and $4 \iota^{2} x$.
74. The Least Common Moltiple of two or more quantities, is the simplest quantity that can be divided by each, without a remainder. Thus, $12 a^{2} b^{2} x^{2}$, is the least common multiple of $2 a^{2} x, 4 a b^{2}$, and $6 a^{2} b^{2} x^{2}$.
75. Since the common multiple is a dividend of each of the quantities, and since the division is exact, the common multiple must contain every prime factor in all the quantities; and if the same factor enters more than once, it must enter an equal number of times into the common multiple.

When the given quantities can be factored, by any of the methods already given, the least common multiple may be found by the following

rule.

I. Resolve ectch of the quantitics into its prime fuctors:
II. Take each factor as many times as it enters any one. of the quantities, and form the continued product of these fuctors; it will be the least common multiple.

[^17]
EXAMPLES.

1. Find the least common multiple of $12 a^{3} b^{2} c^{2}$ and $8 a^{2} b^{3}$.

$$
\begin{aligned}
12 a^{3} b^{2} c^{2} & =-2.2 .3 . a a a \hbar b c c . \\
8 a^{2} b^{3} & =2.2 .2 . a a b b b .
\end{aligned}
$$

Now, since 2 enters 3 times as a factor, it must enter 3 limes in the common multiple: 3 must enter once ; $a, 3$ times; $b, 3$ times; and c, twice; hence,

$$
2 \cdot 2 \cdot 2.3 a a a b b b c c=24 a^{3} b^{3} c^{2}
$$

is the least common multiple.
Find the least common multiples of the following:
2. $6 a, 5 a^{2} b$, and $25 a b c^{2}$.

Ans. $150 a^{2} b c^{2}$
3. $3 a^{2} b, 9 a b c$, and $27 a^{2} x^{2}$. Ans. $27 a^{2} b c x^{2}$.
4. $4 a^{2} x^{2} y^{2}, 8 a^{3} x y, 16 a^{4} y^{3}$, and $24 a^{5} y^{4} x$. Ans. $48 a^{5} x^{2} y^{4}$.
5. $a x-b x, a y-b y$, and $x^{2} y^{2}$.

$$
\text { Ans. }(a-b) x . x \cdot y y=a x^{2} y^{2}-b x^{2} y^{2}
$$

6. $a+b, a^{2}-b^{2}$, and $a^{2}+2 a b+b^{2}$.

$$
\text { Ans. }(a+b)^{2}(a-b)
$$

7. $3 a^{3} b^{2}, 9 a^{2} x^{2}, 18 a^{4} y^{3}, 3 a^{2} y^{2}$. Ans. 18 $u^{4} b^{2} x^{2} y^{3}$.
8. $8 a^{2}(a \neq b), 15 a^{5}(a-b)^{2}$, and $12 a^{3}\left(a^{2}-b^{2}\right)$.

Ans. $120 a^{5}(a-b)^{2}(a+b)$.

CILAPTER IV.

```
FRACTTIONS.
```

76 If the unit 1 be divided into any number of equal parts, each part is called a fractional unit. Thus, $\frac{1}{2}, \frac{1}{4}$, $\frac{1}{7}, \frac{1}{b}$, are fractional units.
87. A Fraction is a fractional unit, or a collection of fractional units. Thus, $\frac{1}{2}, \frac{3}{4}, \frac{5}{7}, \frac{a}{b}$, are fractions.
98. Every fraction is composed of two parts, the Denominator and Numerator. The Denominator shows into how many equal parts the unit 1 is divided; and the Numerator how many of these parts are taken. Thus, in the fraction $\frac{a}{b}$, the denominator b, shows that 1 is divided into b equal parts, and the numerator a, shows that a of these parts are taken. The fractional unit, in all eases, is equal to the reciprocal of the denominator.

[^18]79. An Entire Quantity is one which contains no fractional part. Thus, 7, 11, $a^{3} x, 4 x^{2}-3 y$, are entire quantities.

An entire quantity may be regarded as a fraction whose denominator is 1 . Thus, $7=\frac{7}{1}, a b=\frac{a b}{1}$.

80 A Mixed Quantity is a quantity containing both entire and fractional parts. Thus, $7 \frac{4}{10}, 8 \frac{3}{7}, a+\frac{b x}{c}$, are mixed quantities.
81. Let $\frac{a}{b}$ denote any fraction, and q any quantity whatever. From the preceding definitions, $\frac{a}{b}$ denotes that $\frac{1}{b}$ is taken a times; also, $\frac{a q}{b}$ denotes that $\frac{1}{b}$ is taken $a q$ times; that is,

$$
\frac{a q}{b}=\frac{a}{b} \times q ; \text { hence }
$$

Mrultiplying the numerator of a fraction by any quantity, is equivalent to multiplying the fraction by that quantity.

We see, also, that any quantity may be multiplied by a fraction, by multiplying it by the numerator, and then dividing the result by the denominator.
82. It is a principle of Division, that the same result will be obtained if we divide the quantity a by the product of two factors, $p \times q$, as would be obtained by dividing it

[^19]first by one of the factors, p, and then dividing that result by the other factor, q. That is,
$$
\frac{a}{p q}=\left(\frac{a}{p}\right) \div q ; \text { or, } \frac{a}{p q}=\left(\frac{a}{q}\right) \div p ; \text { hence, }
$$

Multiplying the denominator of a fraction by any quen lity, is equivalent to dividing the fraction by that quantity
88. Since the operations of Multiplication and Division are the converse of each other, it follows, from the preced ing principles, that,

Dividing the numerator of a fraction by any quantity, is equivalent to dividing the fraction by that quantity; and,

Dividing the denominator of a fraction by any quantity, is equivalent to multiplying the fraction by that quantity.
84. Since a quantity may be multiplied, and the result divided by the same quantity, without altering the value, it follows that,

Both terms of a fraction may be multiplied by any quentity, or both clivided by any quantity, without changing the value of the fraction.

TRANSFORMATION OF FRACTIONS.

85. The transformation of a quantity, is the operation of changing its form, without altering its value. The term reduce has a technical signification, and means, to Trans form.
[^20]
FIRST TRANSFORMATION.

To reduce an entire quantity to a fractional form having a given denominator.
86. Let a be the quantity, and b the given denominator. We have, evidently, $a=\frac{a b}{b}$; hence, the

RULE.
Multiply the quantity by the given denominator, and write the product over this given denominator.

SECOND TRANSFORMATION.

To reduce a fraction to its lowest terms.
8\%. A fraction is in its lowest terms, when the numerator and denominator contain no common factors.

It has been shown, that both terms of a fraction may be divided by the same quantity, without altering its value. Hence, if they have any common factors, we may strike them out.

RULE.
Resolve each term of the fraction into its prime factors ; then strike out all that are common to both.

The same result is attained by dividing both terms of the fraction by any quantity that will divide them, without a remainder; or, by dividing them by their greatest common divisor.

[^21]
EXAMPLES.

1. Reduce $\frac{15 a^{2} c^{2}}{25 u c d}$ to its lowest terms.

Factoring, $\quad \frac{15 a^{2} c^{2}}{25 a c d}=\frac{3.5 a c c c}{5.5 a c d}$;
Canceling the common factors, $5, a$, and c, we have,

$$
\frac{15 a^{2} c^{2}}{25 a c \cdot l}=\frac{3 \pi \dot{c}}{5 d} \cdot \quad \text { Ans. }
$$

2. Reduce $\frac{85 b^{7} c l^{5}}{15 b^{6} \cdot c^{8} d^{5}}$.

Ans. $\frac{17}{3 c^{7}}$.
3. Reduce $\frac{60 c^{6} l^{4} f^{5}}{i 2 c^{5} l^{4} f^{9}}$. Ans. $\frac{5 c}{d^{4} f^{4}}$.
4. Reduce $\frac{a b-a c}{b-c}$.

Ans. $\frac{a}{1}=a_{n}$
15. Reduce $\frac{n^{2}-2 n+1}{u^{2}-1}$. Ans. $\frac{n-1}{n+1}$.

- 0. Reduce $\frac{x^{3}-a x^{2}}{x^{2}-2 a x+\iota^{2}}$. Ans. $\frac{x^{2}}{x-a}$.
-7. Reduce $\frac{96 r^{3} b^{2} c}{-12 u^{3} b^{2} c}$. Ans. $-\frac{8}{1}=-8$.

8. Reduce $\frac{24 b^{5}-36 a b^{4}}{48 a^{4} b^{4}-66 a^{5} b^{6}}$. Ans. $\frac{4 b-6 a}{8 a^{4}-11 a^{5} b^{2}}$.
9. Reduce $\frac{a^{2}-b^{2}}{a^{2}-2 a b+b^{2}}$. Ans. $\frac{a+b}{a-b}$.
\int 10. Reduce $\frac{5 a^{3}-10 a^{2} b+5 a b^{2}}{8 a^{3}-8 a^{2} b}$. Ans. $\frac{5(a-1)}{8 a}$.
10. Reduce $\frac{3 a^{2}+6 a^{2} b^{2}}{12 a^{4}+6 a^{3} c^{2}}$.

Ans. $\frac{1+2 b^{2}}{4 a^{2}+2 a c^{2}}$
12. Reduce $\frac{a^{2}+2 a x+x^{2}}{3\left(a^{2}-x^{2}\right)}$.

Ans. $\frac{a+x}{3(\pi-x)}$.

tilird transformation.

To reduce a fraction to a mixed quantity.
88. When any term of the numerator is divisible by any term of the denominator, the transformation can be effected by Division.

RULE.
Perform the indicated division, continuing the operation as far as possible; then write the remainder over the denominator, and annex the result to the quotient found.

EXAMPLES.

1. Reduce $\frac{a x-a^{2}}{x}$.
2. Reduce $\frac{a x-x^{2}}{x}$.
3. Reduce $\frac{a b-2 a^{2}}{b}$.
4. Reduce $\left(\frac{a^{2}-x^{2}}{a-x}\right.$.
5. Reduce $\left(\frac{x^{3}-y^{3}}{x-y}\right.$.
6. Reduce $\frac{10 x^{2}-5 x+3}{5 x}$. Ans. $2 x-1+\frac{3}{5 x}$.
7. Reduce $\frac{36 x^{3}-72 x+32 a^{2} x^{2}}{9 x} \ldots 4 x^{2}-8+\frac{32 r^{2} x}{9}$.
8. Reduce $\frac{18 a c f-6 b d c f-2 a d}{3 a d f} \cdot \frac{6 c}{d}-\frac{2 b c}{a}-\frac{2}{3 f}$
9. Reduce $\frac{x^{2}+x-4}{x+2}$. Ans. $x-1-\frac{2}{x+2}$.
10. How do you reduce a frnction to a mixed qumr tity ;
11. Reduce $\frac{a^{2}+b^{2}}{a+b}$.
Ans. $a-b+\frac{2 b^{2}}{a+b}$
12. Reduce $\frac{x^{2}+3 x-25}{x-4}$.
Ans. $x+7+\frac{3}{x-4}$

FOURTH transformation.

To reduce a mixed quantity to a fractional form.
89. This transformation is the converse of the preceding, and may be effected by the following

RULE.

Multiply the entire part by the denominator of the fraction, and add to the product the numerator ; write the result over the denominator of the fraction.
EXAMPLES.

1. Reduce $6 \frac{1}{7}$ to the form of a fraction.

$$
6 \times \gamma=42 ; 42+1=43 ; \text { hence, } 6 \frac{1}{7}=\frac{43}{7}
$$

Reduce the following to fractional forms:
2. $\ddot{x}-\frac{\left(a^{2}-x^{2}\right)}{x}=\frac{x^{2}-\left(a^{2}-x^{2}\right)}{x}$. Ans. $\frac{2 x^{2}-a^{2}}{x}$.
3. $x-\left(\frac{a x+x^{2}}{2 a}\right.$.

Ans. $\frac{a x-x^{2}}{2 a}$.
4. $5+\frac{2 x-7}{3 x}$.

Ans. $\frac{15 x-7}{3 x}$
5. $1-\frac{(x-a-1}{a}$.

Ans. $\frac{2 a-x+1}{a}$
6. $1+2 x-\frac{x-3}{5 x}$.

Aทs. $\frac{10 x^{2}+4 x+3}{5 x}$

B9. How do you reduce a mixed quantity to a fractional form?
$\begin{array}{ll}\text { 7. } 2 a+b-\frac{3 c+4}{8} . & \text { Ans. } \frac{16 a+8 b-3 c-4}{8} . \\ \text { 8. } 6 a x+b-\frac{6 a^{2} x-a b}{4 a} . & \text { Ans. } \frac{18 a^{2} x+5 a b}{4 a} \\ \text { 9. } 8+3 a b-\frac{8+6 a^{2} b^{2} x^{4}}{12 a b x^{4}} . & \end{array}$

$$
\text { Ans. } \frac{96 a b x^{4}+30 a^{2} b^{2} x^{4}-8}{12 a b x^{4}}
$$

FIFTH TRANSFORMATION.
To reduce fractions having different denominators, to equrvalent fractions having the least common denominator.
90. This transformation is effected by finding the least common multiple of the denominators.

1. Reduce $\frac{1}{3}, \frac{3}{4}$, and $\frac{5}{12}$, to their least common denominators.

The least common multiple of the denominators is 12 , which is also the least common denominator of the required fractions. If each fraction be multiplied by 12 , and the result divided by 12 , the values of the fractions will not be changed.

$$
\begin{aligned}
& \frac{1}{3} \times 12=4, \quad 1 \text { st new numerator; } \\
& \frac{3}{4} \times 12=9, \quad 2 \text { d new numerator; } \\
& \frac{5}{12} \times 12=5, \quad \text { 3rd new numerator; hence, }
\end{aligned}
$$

$$
\frac{4}{12}, \frac{9}{12}, \text { and } \frac{5}{12} \text { are the new equivalent fractions. }
$$

[^22]
RULE.

1. Find the least common multiple of the denominators:
II. Multiply each fraction by it, and cancel the denomr inator:
III. Write each product over the common multiple, and tive results will be the required fractions.

GENEHAL RULII.

Multiply each numerator by all the denominators except its owor, for the new numerators, and all the denominators together for a common denominator.

EXAMPLES.

1. Reduce $\frac{a}{a^{2}-b^{2}}$ and $\frac{c}{a+b}$ to their least common denominator.

The least common multiple of the denominators is $(a+b)$ $(a-b)$:

$$
\begin{aligned}
& \frac{a}{a^{2}-b^{2}} \times(a+b)(a-b)=a \\
& \frac{c}{a+b} \times(a+b)(a-b)=c(a-b ; \text { hence, }
\end{aligned}
$$

$\frac{a}{(a+b)(a-b)}$ and $\frac{c(a-b)}{(a+b)(a-b)}$, are the required fractions.

Reduce the fullowing to their least common denominators:
2. $\frac{5 x}{4}, \frac{4}{6}$, and $\frac{12 x^{2}}{15}$. Ans. $\frac{45 x}{60}, \frac{40}{60}, \frac{48 x^{3}}{60}$
3. $a, \frac{3 b^{2}}{4}$, and $\frac{5 c^{3}}{6}$.

Ans. $\frac{12 a}{12}, \frac{9 b^{2}}{12}, \frac{10 c^{3}}{12}$
4. $\frac{3 x}{2 a}, \frac{2 b}{3 c}$, and $d . \quad$ Aus. $\frac{9 c x}{6 a c}, \frac{4 u b}{6 u c}, \frac{6 a c d b}{6 a c}$

$$
\begin{aligned}
& \text { 5. } \frac{3}{4}, \frac{2 x}{3}, a+\frac{2 x}{a} . \quad \text { Ans. } \frac{9 a}{12 a}, \frac{8 u x}{12 a}, \frac{12 a^{2}+\frac{2}{12 a}}{12 a x} \\
& \text { 0. } \frac{x}{1-x}, \frac{x^{2}}{(1-x)^{2}}, \text { and } \frac{x^{3}}{(1-x)^{3}} \\
& \text { Ans. } \frac{x(1-x)^{2}}{(1-x)^{3}}, \frac{x^{2}(1-x)}{(1-x)^{3}} \text {, and } \frac{x^{3}}{(1-x)^{3}} \\
& \text { 7. } \frac{c}{5 a}, \frac{c-b}{c} \text {, and } \frac{c}{a+b} . \\
& \frac{a c^{2}+b c^{2}}{5 u^{2} c+5 a b c}, \frac{5 a^{2} c-5 a^{2} b+5 a b c-5 a b^{2}}{5 a^{2} c+5 a b c}, \frac{5 a c^{2}}{5 a^{2} c+5 a b c} \\
& \text { 8. } \frac{c x}{a-x}, \frac{d x^{2}}{a+x}, \text { and } \frac{x^{3}}{a+x} . \\
& \text { Ans. } \frac{c x(a+x)}{u^{2}-x^{2}}, \frac{d x^{2}(a-x)}{a^{2}-x^{2}}, \text { and } \frac{x^{3}(a-x)}{a^{2}-x^{2}}
\end{aligned}
$$

ADDITION OF FRACTIONS.

91. Fractions can only be added when they have a common unit, that is, when they have a common denominator. In that case, the sum of the numerators will indicate how many times that unit is taken in the entire collection. Hence, the

R ULE.

I. Reduce the fractions to be added, to a common denominatur:
II. Add the numerators together for a newo numerator and write the sum over the common denominator.

$$
E X \triangle M P L E S
$$

1. Add $\frac{6}{2}, \frac{4}{3}$, and $\frac{2}{5}$, together.
2. What is the rule for adding fractions?

By reducing to a common denominator, we have,

$6 \times 3 \times 5=90$,	1st numerator.
$4 \times 2 \times 5=40$,	2 d numerator.
$2 \times 3 \times 2=12$,	3d numerator.
$2 \times 3 \times 5=30$,	the denominator.

IIence, the expression for the sum of the fractions becomes

$$
\frac{90}{30}+\frac{40}{30}+\frac{12}{30}=\frac{142}{30} ;
$$

which, being reduced to the simplest form, gives $4 \nmid\}$.
2. Find the sum of $\frac{a}{b}, \frac{c}{d}$, and $\frac{e}{f}$.

Here, $\quad a \times d \times f=a d j_{j}$

$$
\left.\begin{array}{l}
c \times b \times f=c b j \\
e \times b \times d=e b d
\end{array}\right\} \text { the new numerators. }
$$

and $\quad b \times d \times f=b d f$ the common denominator.
Hence, $\frac{a d f}{b d f}+\frac{c b f}{b d f}+\frac{e b d}{b d f}=\frac{a d f+c b f+e b d}{b d f}$, the sum.
Add the following:
3. $a-\frac{3 x^{2}}{b}$, and $b+\frac{2 a x}{c} \cdot A n s . a+b+\frac{2 a b x-3 c x^{2}}{b c}$.
4. $\frac{x}{2}, \frac{x}{3}$, and $\frac{x}{4}$.

Ans. $x+\frac{x}{12}$.
5. $\frac{x-2}{3}$ and $\frac{4 x}{7}$.

Ans. $\frac{19 x-14}{21}$.
B. $x+\frac{x-2}{3}$ and $3 x+\frac{2 x-3}{4}$. Ans. $4 x+\frac{10 x-17}{12}$.
7. $4 x, \frac{5 x_{2}}{2 a}$, and $\frac{x+a}{2 x}$. Ans. $4 x+\frac{5 x^{3}+a x+a^{2}}{2 a x}$.
8. $\frac{2 x}{3}, \frac{7 x}{4}$, and $\frac{2 x+1}{5}$ Ans. $2 x+\frac{49 x+12}{60}$.
9. $4 x, \frac{7 x}{9}$, and $2+\frac{x}{5}$. Ans. $2+4 x+\frac{44 x}{45}$.
10. $3 x+\frac{2 x}{5}$ and $x-\frac{8 x}{9}$. Ans. $3 x+\frac{23 x}{45}$
11. $a c-\frac{6 b}{8 a}$ and $1-\frac{c}{d}$.

$$
A n s .1+a c-\frac{6 b d+8 a c}{8 a d}
$$

12. $\frac{3}{(x-1)^{3}}, \frac{3}{(x-1)^{2}}$, and $\frac{4}{x-1}$.

$$
\text { Ans. } \frac{4 x^{2}-5 x+4}{(x-1)^{3}}
$$

13. $\frac{1}{4(1+a)}, \frac{1}{4(1-a)}$, and $\frac{1}{2\left(1-a^{2}\right)} \cdot A n s . \frac{1}{1-a^{2}}$.

SUBTRACTION OF FRACTIONS.
92. Fractions can only be subtracted when they have the same unit; that is, a common denominator. In that case, the numerator of the minuend, minus that of the subtrahend, will indicate the number of times that the common unit is to be taken in the difference. Hence, the

RULE.

I. Recluce the two fractions to a common denomiinator:
II. Then subtract the numerator of the subtrahend from that of the minuend for a new numerator, and write the remainder over the common denominator.

EXAMPLES.

1. What is the difference between $\frac{3}{7}$ and $\frac{2}{8}$.

$$
\frac{3}{7}-\frac{2}{8}=\frac{24}{56}-\frac{14}{56}=\frac{10}{56}=\frac{5}{28} \cdot A n s
$$

92. What is the rule for subtracting fractions
93. Find the difference of the fractions $\frac{x-a}{2 b}$ and $\frac{2 a-4 x}{3 c}$ IIere, $\left\{\begin{aligned}(x-a) \times 3 c & =3 c x-3 a c \\ (2 a-4 x) \times 2 b & =4 a b-8 b x\end{aligned}\right\}$ the numerators, and, $\quad 2 b \times 3 c=6 b c$ the common denominator. Hence, $\frac{3 c x-3 a c}{6 b c}-\frac{4 a b-8 b x}{6 b c}=\frac{3 c x-3 a c-4 a b+8 b c}{6 b c}$. Ans.
94. Required the difference of $\frac{12 x}{7}$ and $\frac{3 x}{5}$. Ans. $\frac{39 x}{35}$.
95. Required the difference of $5 y$ and $\frac{3 y}{8}$. Ans. $\frac{37 y}{8}$.
96. Required the difference of $\frac{3 x}{7}$ and $\frac{2 x}{9}$. Ans. $\frac{13 x}{63}$.
97. From $\frac{x+y}{x-y}$ subtract $\frac{x-y}{x+y}$. Ans. $\frac{4 x y}{x^{2}-y^{2}}$.
98. From $\frac{1}{y-z}$ subtract $\frac{1}{y^{2}-z^{2}}$. Ans. $\frac{y+z-1}{y^{2}-z^{2}}$.

Find the differences of the following:
8. $\frac{3 x+a}{5 b}$ and $\frac{2 x+7}{8}$. Ans. $\frac{24 x+8 a-10 b x-35 b}{40 b}$
9. $3 x+\frac{x}{b}$ and $x-\frac{x-a}{c}$. Ans. $2 x+\frac{c x+b x-a b}{b c}$,
10. $a+\frac{a-x}{a(a+x)}$ and $\frac{a+x}{a(a-x)}$. Ans. $a-\frac{4 x}{a^{2}-x^{2}}$.

MULTTPLICATION OF FRACTIONS.

3. Let $\frac{a}{b}$ and $\frac{c}{\bar{l}}$, represent any two fractions. It hasl been shown (Art. 81), that any quantity may be multiplied
4. What is the rule for the multiplication of fractions?
by a fraction, by first multiplying by the numerator, and then dividing the result by the denominator.
To multiply $\frac{a}{b}$ by $\frac{c}{a}$, we first multiply by c, giving $\frac{a c}{b}$ then, we divide this result by d, which is done by multiply. ing the denominator by d; this gives for the product, $\frac{a c}{b d}$; that is,

$$
\frac{a}{b} \times \frac{c}{d}=\frac{a c}{b d} ; \text { hence, }
$$

RULE.

I. If there are mixed quantities, reduce them to a frac. lional form; then,
II. Multiply the numerators together for a new numerar tor, and the denominators for a new denominator.

EXAMPLES.

1. Multiply $a+\frac{b x}{a}$ by $\frac{c}{d}$. First, $a+\frac{b x}{a}=\frac{a^{2}+b x}{a}$, hence, $\quad \frac{-a^{2}+b x}{a} \times \frac{c}{d}=\frac{a^{2} c+b c x}{a d}$. Ans.

Find the products of the following quantities:
2. $\frac{2 x}{a}, \frac{3 a b}{c}$, and $\frac{3 a c}{2 b}$

Ans. 9ax.
3. $b+\frac{b x}{a}$ and $\frac{a}{x}$.
4. $\frac{x^{2}-b^{2}}{b c}$ and $\frac{x^{2}+b^{2}}{b+c}$.

Ans. $\frac{x^{4}-b^{4}}{b^{2} c+b c^{3}}$.
5. $x+\frac{x+1}{a}$, and $\frac{x-1}{a+b}$. Ans. $\frac{a x^{2}-a x+x^{2}-1}{a^{2}+a b}$.
b. $\stackrel{a}{a}+\frac{a x}{a-x}$ and $\frac{a^{2}-x^{2}}{x+x^{2}}$.

Ans. $\frac{a^{3}+a^{2} x}{x+x^{2}}$.

7 Multiply $\frac{2 a}{a-b}$ by $\frac{a^{2}-b^{2}}{3}$.
We have, by the rule,

$$
\begin{aligned}
\frac{2 a}{a-b} \times \frac{a^{2}-b^{2}}{3} & =\frac{2 a\left(a^{2}-b^{2}\right)}{3(a-b)}=\frac{2 u(a+b)(a-b)}{} \\
& =\frac{2 a}{3}(a+b) .
\end{aligned}
$$

After indicating the operation, we factored both numeran tor and denominator, and then canceled the common factors, before performing the multiplication. This should be done, whenever there are common factors.
8. $\frac{2}{x-y}$ by $\frac{x^{2}-y^{2}}{a}$. Ans. $\frac{2(x+y)}{a}$.
9. $\frac{x^{2}-4}{3}$ by $\frac{4 x}{x+2}$.

Ans. $\frac{4 x(x-2)}{3}$.
10. $\frac{(a+b)^{2}}{2 x}$ by $\frac{4 x^{2}}{(a+b)}$. Ans. $2 x(a+b)$.
11. $\frac{(x-1)^{2}}{y^{3}}$ by $\frac{(x+1) y^{2}}{x-1}$. Ans. $\frac{x^{2}-1}{y}$.
12. $\frac{\left(a^{2}-x^{2}\right)}{1-x^{2}}$ by $\frac{1+x}{a+x}$.

Ans. $\frac{a-x}{1-x}$.
13. $x+\frac{2 x y}{x-y}$ by $x-\frac{2 x y}{x+3}$

Ans. x^{2}.
14. $\frac{2 a-b}{4 a}$ by $\frac{6 a-2 b}{b^{2}-2 a b}$

Ans. $\frac{b-3 a}{2 a b}$.
14. $\approx-\frac{y^{2}}{x}$ by $\frac{x}{y}+\frac{y}{x}$.

$$
\text { Ans. } \frac{x^{4}-y^{4}}{x^{2} y}
$$

DIVISION OF FRACTIONS.

94. Since $p=g \times \frac{1}{y}$, it follows that, dividing by a quancity is equifalent to multiplying by its reciprocal. Bnt the reciprocal of a fraction, $\frac{c}{d}$, is $\frac{d}{c}$ (Art. 28); consequently, to divide any quantity by a fraction, we invert the terms of the divisor, and multiply by the resulting fraction. Hence,

$$
\frac{a}{\bar{b}} \div \frac{c}{d}=\frac{a}{b} \times \frac{d}{c}=\frac{a d}{b c}
$$

Whence, the following rule for dividing one fraction by another :

RULE.

I. Reduce mixed quantities to fractional forms:
II. Invert the terms of the divisor, and multiply the , Iividend by the resulting fraction.

Note.-The same remarks as were made on factoring and rechucing, under the head of Multiplication, are applicable in Division.

EXAMPLES.

1. Divide $a-\frac{b}{2 c}$ by $\frac{f}{g}$.

$$
a-\frac{b}{2 c}=\frac{2 a c-b}{2 c}
$$

Hence, $a-\frac{b}{2 c} \div \frac{f}{g}=\frac{2 a c-b}{2 c} \times \frac{g}{f}=\frac{2 a c g-b g}{2 c f}$. Ans

[^23]2. Divide $\frac{2(x+y)}{a}$ by $\frac{x^{2}-y^{2}}{a}$.
\[

$$
\begin{aligned}
\frac{2(x+y)}{a} \times \frac{a}{x^{2}-y^{2}} & =\frac{2(x+y)}{a} \times \frac{a}{(x+y)(x-y)} \\
& =\frac{2}{x-y} \cdot \text { Ans. }
\end{aligned}
$$
\]

3. Let $\frac{7 x}{5}$ be divided by $\frac{12}{13}$. Ans. $\frac{91 ヶ}{60}$.
4. Let $\frac{4 x^{2}}{7}$ be divided by $5 x$. Ans. $\frac{4 x}{35}$.
5. Let $\frac{x+1}{6}$ be divided by $\frac{2 x}{3}$. Ans. $\frac{x+1}{4 x}$.
6. Let $\frac{x}{x-1}$ be divided by $\frac{x}{2}$. Ans. $\frac{2}{x-1}$.
7. Let $\frac{5 x}{3}$ be divided by $\frac{2 a}{3 b}$.

Ans. $\frac{5 b x}{2 a}$.
8. Let $\frac{x-b}{8 c d}$ be divided by $\frac{3 c x}{4 d}$. Ans. $\frac{x-b}{6 c^{2} x}$.

Divide the following fractions:
9. $\frac{4 x^{2}-8 x}{3}$ by $\frac{x^{2}-4}{3}$.

Ans. $\frac{4 x}{x+2} \cdot \gamma$
10. $\frac{x^{4}-b^{4}}{x^{2}-2 b x+b^{2}}$ by $\frac{x^{2}+b x}{x-b}$. Ans. $x+\frac{l}{x}$.
11. $2 x(a+b)$ by $\frac{4 x^{2}}{a+b}$. Ans. $\frac{(a+b)^{2}}{2 x}$
12. $\frac{x^{2}-1}{y}$ by $\frac{(x+1) y^{2}}{x-1}$. Ans. $\frac{(x-1)^{2}}{y^{3}} \cdot$ *
13. $\frac{a^{2}-a x}{b c+b x}$ by $\frac{3(c-x)}{4(c+x)}$. Ans. $\frac{4 a\left(a^{2}-x^{2}\right)}{3 b\left(c^{2}-x^{2}\right)}$
14. $\frac{a-x}{1-x}$ by $\frac{1+x}{a+x}$. Ans. $\frac{a^{2}-x^{2}}{1-x^{2}}$.
$15 x^{2}$ by $x-\frac{2 x y}{x+y}$.
Ans. $\frac{x^{2}+x y}{x-y}$
16. $\frac{b-3 a}{2 a b}$ by $\frac{6 a-2 b}{b^{2}-2 a b}$.

Ans. $\frac{2 a-b}{4 a}$.
17. $\frac{x^{4}-y^{4}}{x^{2} y}$ by $\frac{x}{y}+\frac{y}{x}$. Ans. $\frac{x^{2}-y^{2}}{x}$.
18. $\left(m^{2}+1+\frac{1}{m^{2}}\right)$ by $\left(m+\frac{1}{m}+1.\right)$

$$
\text { Ans. } m+\frac{1}{m}-1
$$

$10 \quad\left(x+\frac{y-x}{1+x y}\right)$ by $(1-\alpha(y-x)$. Ans. y.
20. $\left(\frac{x+2 y}{x+y}+\frac{x}{y}\right)$ by $\left(\frac{x+2 y}{y}-\frac{x}{x+y}\right)$. Ans 1

CHAPTER V.

EQUATIONS OF THE FIRST DEGRER.
95. An Equation is the expression of equality between two quantities. Thus,

$$
x=b+c,
$$

is an equation, expressing the fact that the quantity x, is equal to the sum of the quantities b and c.
96. Every equation is composed of two parts, connected by the sign of equality. These parts are called members: the part on the left of the sign of equality, is called the first member ; that on the right, the second member. Thus, in the equation,

$$
x+a=b-c,
$$

$x+a$ is the first member, and $b-c$, the second member.
97. An equation of the first degree is one which involves only the first power of the unknown quantity; thus,

$$
\begin{array}{ll}
& 6 x+3 x-5=13 ;(1) \\
\text { and } \quad a x+b x+c=d ;(2)
\end{array}
$$

are equations of the first degree.
95. What is an equation?
96. Of how many parts is every equation composed? How are the parts connected? What are the parts called? What is the part on the • left called? The part on the right?
97. What is an equation of the first degree
98. A numerical equation is one in which the coeff. clents of the unknown quantity are denoted by numbers.
99. A hiteral equation is one in which the coefficients of the unknown quantity are denoted by letters.
Equation (1) is a numerical equation; Equation (2) is a literal equation.
equations of the first degree containing but onk unknown quantity.
100. The Transformatton of an equation, is the operation of changing its form without destroying the equality of its members.
101. An Axrom is a self-evident proposition.
102. The transformation of equations depends upon the following axioms:

1. If equal quantities be added to both members of an equation, the equality will not be destroyed.
2. If equal quantities be subtracted from both members of an equation, the equality will not be destroyed.
3. If both members of an equation be multiplied by the same quantity, the equality will not be destroyed.
4. If both members of an equation be divided by the same quantity, the equality will not be destrnyed.
5. Like powers of the two members of an equation are equal.
6. Like roots of the two members of an equation are equal.
7. What is a numerical equation?

99 What is a literal equation?
100. What is the transformation of an equation?

101 What is an axiom?
102. Name the axioms on which the transformation of an equation depends.
103. Two principal transformations are employed in the solution of equations of the first degree: Clearing of fraotions, and Transposing.

CLEARING OF FRACTIONS.

1. Take the equation,

$$
\frac{2 x}{3}-\frac{3 x}{4}+\frac{x}{6}=11 .
$$

The least common multiple of the denominators is 12 . If we multiply both members of the equation by 12 , each term will reduce to an entire form, giving,

$$
8 x-9 x+2 x=132 .
$$

Any equation may be reduced to entire terms in the same manner.
104. Hence for clearing of fractions, we have the following

RULE

I. Find the least common multiple of the denominators:
II. Multiply both members of the equation by it, reaucing the fractional to entire terns.

Note.-1. The reduction will be effected, if we divide the least common multiple by each of the denominators, and then multiply the corresponding numerator, dropping the denominator.
2. The transformation may be effected by multiplying each numerator into the product of all the denominators except its own, omitting denominators.

[^24]3. The transformation may also be effected, by multiplying both members of the equation by any multiple of the denominators.

EXAMPLES.

Clear the following equations of fractions:

1. $\frac{x}{5}+\frac{x}{7}-4=3$. Ans. $7 x+5 x-140=105$
2. $\frac{x}{6}+\frac{x}{9}-\frac{x}{27}=8$. Ans. $9 x+6 x-2 x=432$.
3. $\frac{x}{2}+\frac{x}{3}-\frac{x}{9}+\frac{x}{12}=20$.

Ans. $18 x+12 x-4 x+3 x=720$.
4. $\frac{x}{5}+\frac{x}{7}-\frac{x}{2}=$ 4. Ans. $14 x+10 x-30 x=280$.
5. $\frac{x}{4}-\frac{x}{5}+\frac{x}{6}=15$. Ans. $15 x-12 x+10 x=900$
6. $-\frac{x-4}{3}-\frac{x-2}{6}=\frac{5}{3}$.

$$
\text { Ans. }-2 x+8-x+2=10
$$

7. $\frac{x}{3-x}+4=\frac{3}{5}$. Ans. $5 x+60-20 x=9-3 x$.
8. $\frac{x}{4}-\frac{x}{6}+\frac{x}{8}+\frac{x}{9}=12$.

$$
\text { Ans. } 18 x-12 x+9 x+8 x=864
$$

9. $\frac{a}{b}-\frac{c}{d}+f=g: \quad$ Ans. $a d-b c+b d f=b d g$ 10. $\frac{a x}{b}-\frac{2 c^{2} x}{a b}+4 a=\frac{4 b c^{2} x}{a^{3}}-\frac{5 a^{3}}{b^{2}}+\frac{2 c^{2}}{a}-3 b$.

The least common multiple of the denominators is $a^{3} b^{2}$ $a^{4} b x-2 a^{2} b c^{2} x+4 a^{4} b^{2}=4 b^{3} c^{2} x-5 a^{6}+2 a^{2} b^{2} c^{2}-3 a^{3} b^{3}$.

rRANSPOSLNG.

105. Transposrrion is the operation of changing a term from one member to the other, without destroying the equality of the members.
106. Take, for example, the equation,

$$
5 x-6=8+2 x
$$

If, in the first place, we subtract $2 x$ from both members the equality will not be destroyed, and we have,

$$
5 x-6-2 x=8
$$

Whence we see, that the term $2 x$, which was additive in the second member, becomes subtractive by passing into the first.

In the second place, if we add 6 to both members of the last equation, the equality will still exist, and we have,

$$
5 x-6-2 x+6=8+6
$$

or, since -6 and +6 cancel each other, we have,

$$
5 x-2 x=8+6
$$

Hence, the term which was subtractive in the first member, passes into the second member with the sign of addition.
106. Therefore, for the transposition of the terms, we have the following RULE.

Any term may be transposed from one member of an equation to the other, if the sign be changed.
105. What is transy ssition?
108. What is the rule for the transposition of the terms of an equation?

EXAMPLES.

Transpose the unknown terms to the first member, and the known terms to the second, in the following:

1. $3 x+6-5=2 x-7$. Ans. $3 x-2 x=-7-6+5$.
2. $a x+b=d-c x . \quad$ Ans. $a x+c x=d-b$.
3. $4 x-3=2 x+5$. Ans. $4 x-2 x=5+3$.
4. $9 x+c=c x-d$. Ans. $9 x-c x=-d-c$.
5. $a x+f=d x+b$. Ans. $a x-d x=b-f$.
6. $6 x-c=-a x+b$. Ans. $6 x+a x=b+c$.

SOLUTION OF EQUATIONS.

10\%. The Solution of an equation is the operation of finding such a value for the unknown quantity, as will satisfy the equation; that is, such a value as, being sukstituted for the unknown quantity, will render the two members equal. This is called a noot of the equation.

A Root of an equation is said to be verified, when being substituted for the unknown quantity in the given equation, the two members are found equal to each other.

1. Take the equation,

$$
\frac{3 x}{2}-4=\frac{4(x-2)}{8}+3
$$

Clearing of fractions (Art. 104), and performing the opera tions indicated, we have,

$$
12 x-32=4 x-8+24
$$

107. When is the solution of an equation? What is the found value of the unknown quantity called? When is a root of an equation said to be rerified.

Transposing all the unknown terms to the first member, and the known terms to the second (Art. 106), we have,

$$
12 x-4 x=-8+24+32 .
$$

Reducing the terms in the two members,

$$
8 x=48 .
$$

Dividing both members by the coefficient of x,

$$
x=\frac{48}{8}=6 .
$$

verification.

$$
\begin{aligned}
\frac{3 \times 6}{2}-4 & =\frac{4(0-2)}{8}+3 ; \text { or, } \\
+9-4 & =2+3=5
\end{aligned}
$$

Hence, 6 satisfies the equation, and therefore, is a root.
103. By processes similar to the above, all equations of the first degree, containing but one unknown quantity, may be solved.

rule.

I. Clear the equation of fractions, and perform all tho indicated operations :
II. Transpose all the unknown terms to the first member, und all the knowon terms to the second member:
III. Rechuce all the terms in the first member to a single term, one factor of which will be the unknown quantity, and the other factor will be the algebraic sum of its coefficients:
IV. Divide both members by the coefficient of the unknown quantity: the second member woill then be the value of the unknown quantity.

[^25]
EXAMPLES.

1. Solve the equation,

$$
\frac{5 x}{12}-\frac{4 x}{3}-13=\frac{7}{8}-\frac{13 x}{6}
$$

Clearing of fractions,

$$
10 x-32 x-312=21-52 x
$$

By transposing,

$$
10 x-32 x+52 x=21+312
$$

By reducing.

$$
30 x=383
$$

$$
x=\frac{333}{30}=\frac{111}{10}=11.1
$$

a result which may be verified by substituting it for x in the given equation.
2. Solve the equation,

$$
(3 a-x)(a-b)+2 a x=4 b(x+a)
$$

Performing the indicated operations, we have,

$$
3 a^{2}-a x-3 a b+b x+2 a x=4 b x+4 a b
$$

By transposing,

$$
-a x+b x+2 a x-4 b x=4 a b+3 a b-3 a^{2}
$$

By reducing,

$$
a x-3 b x=7 a b-3 a^{2}
$$

Factoring,

$$
(a-3 b) x=7 a b-3 a^{2}
$$

Dividing both members by the cocfficient of x,

$$
x=\frac{7 a b-3 a^{2}}{a-3 b}
$$

3. Given $3 x-2+24=31$ to find x. Ans. $x=3$,
4. Given $x+18=3 x-5$ to find x Ans, $x=11 \frac{1}{2}$
5. Given $6-2 x+10=20-3 x-2$, to find x.

$$
\text { Ans. } x=2
$$

6. Given $x+\frac{1}{2} x+\frac{1}{3} x=11$, to find x. Ans. $x=6$.
7. Given $2 x-\frac{1}{2} x+1=5 x-2$, to find x. Ans. $x=9$
Solve the following equations:
8. $3 a x+\frac{a}{2}-3=b x-a . \quad$ Ans. $x=\frac{6-3 a}{6 a-2 b}$.
9. $\frac{x-3}{2}+\frac{x}{3}=20-\frac{x-19}{2} . \quad$ Ans. $x=23 \frac{1}{4}$.
10. $\frac{x+3}{2}+\frac{x}{3}=4-\frac{x-5}{4}$.

Ans. $x=3_{T_{3}}$.
11. $\frac{x}{4}-\frac{3 x}{2}+x=\frac{4 x}{8}-3$.

Ans. $x=4$.
12. $\frac{3 a x}{c}-\frac{2 b x}{d}-4=f . \quad$ Ans. $x=\frac{c c l f+4 c d}{3 u d-2 b c}$
13. $\frac{x-a}{3}-\frac{(2 x \pm 3 b}{5}-\frac{(a-x)}{2}=10 a+11 b$.
14. $\frac{x}{12}-\left(\frac{(8+x}{8}-\left(\frac{5+x}{4}\right)+\frac{11}{4}=0 . \quad\right.$ Ans. $x=25 a+246$.
15. $\frac{a+c}{a+x}+\frac{a-c}{a-x}=\frac{2 b^{2}}{a^{2}-x^{2}} \quad$ Ans. $x=\frac{a^{2}-b^{2}}{c}$
10. $\frac{8 a x-b}{7}-\frac{3 b-c}{2}=4-b$.

$$
\text { Ans } x=\frac{56+9 b-7 c}{16 a}
$$

$17 \quad \frac{x}{5}-\frac{x-2}{3}+\frac{x}{2}=\frac{13}{3} . \quad$ Ans $x=10$.
18. $\frac{x}{a}-\frac{x}{b}+\frac{x}{c}-\frac{x}{d}=f$.

$$
\text { Ans. } x=\frac{a b c d f}{b c d-a c d+a b d-a b c} .
$$

Note. -What is the numerical value of x, when $a=1$, $b=2, c=3, d=4$, and $f=6$?
19. $\frac{x}{7}-\frac{8 x}{9}-\frac{x-3}{5}=-12 \frac{2}{4} \frac{9}{5}$.

Ans. $x=14$.
$20 \quad x-\frac{3 x-5}{13}+\frac{4 x-2}{11}=x+1 . \quad$ Ans. $x=6$.
21. $x+\frac{x}{4}+\frac{x}{5}-\frac{x}{6}=2 x-43 . \quad$ Ans. $x=60$
22. $2 x-\frac{4 x-2}{5}=\frac{3 x-1}{2}$.

Ans. $x=3$.
23. $3 x+\frac{b x-d}{3}=x+a . \quad$ Ans. $x=\frac{3 a+d}{6+b}$.
24. $\frac{a x-b}{4}+\frac{a}{3}=\frac{b x}{2}-\frac{b x-a}{3}$.

$$
\text { Ans. } x=\frac{3 b}{3 a-2 b}
$$

25. $\frac{4 x}{5-x}-\frac{20-4 x}{x}=\frac{15}{x} . \quad$ Ans. $x=3 \frac{2}{11}$.
26. $\frac{2 x+1}{29}-\frac{402-3 x}{12}=9-\frac{471-6 x}{2}$.

$$
\text { Ans. } x=72
$$

27 $\frac{(a+b)(x-b)}{a-b}-3 a=\frac{4 a b-b^{2}}{a+b}-2 x+\frac{a^{2}-b x}{b}$.

$$
\text { Ans. } x=\frac{a^{4}+3 a^{3} b+4 a^{2} b^{2}-6 a b^{3}+2 b^{4}}{2 b\left(2 a^{2}+a b-b^{2}\right)}
$$

PROBITEMS.

109. A Problear is a question rroposed, requiring a solution.

The Solction of a problem is the operation of finding a^{3} quantity, or quantities, that will satisfy the given conditions.

The solution of a problem consists of two parts:
I. The statement, which consists in expressing, algelraically, the relation betwcen the known and the required quantitics.
II. The solution, wherch consists in fincling the values of the unkinown quantites, in tcrms of those which are known.

The statemert is made by representing the unknown quantities of the problem by some of the final letters of the alphabet, and then operating upon these so as to comply with the conditions ef the problem. The method of stating problems is best learned by practical examples.

1. What number is that to which if 5 be added, the sum will be equal to 9 ?

Denote the number by x. Then, by the conditions,

$$
x+5=9
$$

This is the statement of the problem.
To find the value of x, transpose 5 to the second member; then,

$$
x=9-5=4
$$

This is the solution of the equation.

$$
\begin{aligned}
& \text { verification. } \\
& x+5=0
\end{aligned}
$$

109. What is a problem? What is the solution of a problem? Of bow many parts does it consist ? What are they? What is the state meat? What is the solution?
110. Find a number such that the sum of one-half, one-third, and one-fourth of it, augmented by 45^{\prime}, shall be equal to 448

Let the required number be denoted by x.
Then, one-half of it will be denoted by $\frac{x}{2}$,

one-thurd "	"	by	$\frac{x}{3}$,	
one-fourth	"	"	by	$\frac{x}{4} ;$

aud, by the conditions,

$$
\frac{x}{2}+\frac{x}{3}+\frac{x}{4}+45=448
$$

This is the statement of the problem.
Clearing of fractions,

$$
6 x+4 x+3 x+540=5376
$$

Transposing and collecting the unknown terms,
hence,

$$
\begin{aligned}
13 x & =4836 \\
x & =\frac{4836}{13}=372 .
\end{aligned}
$$

VERIFICATION.

$\frac{372}{2}+\frac{372}{3}+\frac{372}{4}+45=186+124+93+45=448$
3. What number is that whose third part exceeds its fourth by 16 ?

Let the required number be denoted by x. Then,

$$
\begin{aligned}
& \frac{1}{3} x=\text { the third part } \\
& \frac{1}{4} x=\text { the fourth part }
\end{aligned}
$$

and, by the conditions of the problem,

$$
\frac{1}{3} x-\frac{1}{4} x=16
$$

This is the statement. Clearing of fractions, $4 x-3 x=192$,
and hence,

$$
x=192 .
$$

VERIFICATION.

$$
\frac{192}{3}-\frac{192}{4}=64-48=16
$$

4. Divide $\$ 1000$ between A, B, and C, so that A shall have $\$ 72$ more than B, and $C \$ 100$ more than A.
Let x denote the number of dollars which B received.
Then, $x=B^{\prime} s$ number, $x+72=A ' s$ number,
and, $\quad x+172=C^{\prime}$'s number;
and their sum, $3 x+244=1000$, the number of dollars.
This is the statement. By transposing,
$\begin{array}{cl}3 x=1000-244=756 ; \\ \text { and, } & x=\frac{756}{3}=252=B^{\prime} s \text { share. } \\ \text { Hence, } & x+72=252+72=324=A^{\prime} s \text { share, } \\ \text { and, } & x+172=252+172=424=C^{\prime} \text { s share. }\end{array}$
verification.

$$
252+324+424=1000
$$

5. Out of a cask of wine which had leaked away a third part, 21 gallons were afterwards drawn, and the cask being then gauged, appeared to be half full : how much did it hold ?

Let x denote the number of gallons.
Then, $\frac{x}{3}=$ the number that had leaked away.
and, $\quad \frac{x}{3}+21=$ what had leaked and been drawn.
Hence, by the conditions, $\frac{x}{3}+21=\frac{x}{2}$.
This is the statement. Clearing of fractions,

$$
\begin{aligned}
& 2 x+126=3 x, \\
& \text { and, } \quad-x=-126 ;
\end{aligned}
$$

and by changing the signs of both members, which does not destroy their equality (since it is equivalent to multiplying beth members by -1), we have,

$$
x=126
$$

VERIFICATION.

$$
\frac{126}{3}+21=42+21=63=\frac{126}{2}
$$

6. A fish was caught whose tail weighed $9 / \mathrm{lbs}$., his head welghed as much as his tail and half his body, and his body weighed as much as bis head and tail together: what was the weight of the fish?

Let $2 x=$ the weight of the body, in pounds.
Then, $\quad 9+x=$ weight of the head;
and since the body weighed as much as both head and tail,

$$
2 x=9+9+x
$$

which is the statement. Then,

$$
2 x-x=18, \text { and } x=18
$$

Hence, we have,
hence,

$$
\begin{aligned}
2 x=36 l b_{0} & =\text { weight of the body } \\
0+x=27 l b . & =\text { weight of the head } \\
\frac{9 l b .}{72 l b} & =\text { weight of the tail }
\end{aligned}
$$

7. The sum of two numbers is 67 , and their difference 19 . what are the two numbers?

Let x denote the less number.
Then, $x+19=$ the greater; and, by the conditions,

$$
2 x+19=67
$$

This is the statement. Transposing,
hence,

$$
\begin{aligned}
2 x & =67-19=48 \\
x & =\frac{48}{2}=24, \text { and } x+19=43
\end{aligned}
$$

VERIFICATION.

$$
43+24=67, \text { and } 43-24=19
$$

ANOTHER SOLUTION.

Let x denote the greater number.
Then, $\quad x-19$ will represent the less, and, $\quad 2 x-19=67$; whence $2 x=67+10$.
Therefore, $\quad x=\frac{86}{2}=43$;
and, consequently, $x-19=43-19=24$.
general solution of this problem.
The sum of two numbers is s, their difference is d : what are the two numbers?

Let $\quad x \quad$ denote the less number.
Then, $\quad x+d$ will denote the greater, and $2 x+d=s$, their sum. Whence,

$$
x=\frac{s-d}{2}=\frac{s}{2}-\frac{d}{2} ;
$$

and, consequently,

$$
x+d=\frac{s}{2}-\frac{d}{2}+d=\frac{s}{2}+\frac{d}{2} .
$$

As these two results are not dependent on particular values attributed to s or d, it follows that:

1. The greater of two numbers is equal to half their sum. plus half their difference:
2. The less is equal to hulf their sum, minus half their difference.
Thus, if the sum of two numbers is 32 , and their difference 16 ,
the greater is, $\quad \frac{32}{2}+\frac{16}{2}=16+8=24 ;$ and
the less,

$$
\frac{32}{2}-\frac{16}{2}=16-8=8
$$

VERIFICATION.

$$
24+8=32 ; \text { and } 24-8=16
$$

8. A person engaged a workman for 48 days. For each day that he labored he received 24 cents, and for each day that he was idle, he paid 12 cents for his board. At the end of the 48 days, the account was settled, when the laborer received 504 cents. Required, the number of working days, and the number of days he was idle.

If the number of working days, and the number of idle days, were known, and the first multiplied by 24 , and the
second by 12, the difference of these products would be 504. Let us indicate these operations by means of algebraic signs.

Let $\quad x$ denote the number of working days.
Then, $48-x=$ the number of idle days,
$24 \times x=$ the amount earned,
aisd, $12(48-x)=$ the amount paid for board.
Then,

$$
24 x-12(48-x)=504
$$

what was received, which is the statement.
Then, performing the operations indicated,

	$24 x-576+12 x=504$,
or,	$36 x=504+576=1080$,
and,	$x=\frac{1080}{36}=30$, the number of working days;
whence,	$48-30=18$, the number of idle days.

verification.

$\left.\begin{array}{l}\text { Thirty days' labor, at } 24 \text { cents } \\ \text { a day, amounts to }\end{array}\right\} 30 \times 24=720$ cents.
$\left.\begin{array}{l}\text { And } 18 \text { days' board, at } 12 \text { cents } \\ \text { day, amounts to }\end{array}\right\} 18 \times 12=216$ cents.
The difference is the amount received 504 cents.

gENERAL SOLUTION.

This problem may be made general, by denoting the whole number of working and idle days, by n;

The amount received for each day's work, by a;
The amount paid for board, for each idle day, by b;
And what was due the laborer, or the balance of the acoount, by c.

As before, let the number of working days be denoted by x.

The number of idle days will then be denoted by $n-x$.
Hence, what is earned will be expressed by $a x$, and the sam to be deducted, on account of board, by $b(n-2)$.
The statement of the problem, therefore, is,

$$
a x-b(n-x)=c
$$

Per forming indicated operations,

$$
a x-b n+b x=c, \text { or, }(a+b) x=c+b n
$$

whence,

$$
x=\frac{c+b n}{a+b}=\text { number of working days; }
$$

and, $\quad n-x=n-\frac{c+b n}{a+b}=\frac{a n+b n-c-b n}{a+b}$,
or, $\quad n-x=\frac{a n-c}{a+b}=$ number of idle days.
Let us suppose $n=48, a=24, b=12$, and $c=504$; these numbers will give for x the same value as before found.
9. A person dying leaves half of his property to his wife, one-sixth to each of two daughters, one-twelfth to a servant, and the remaining $\$ 600$ to the poor; what was the amount of the property?

Let x denote the amount, in dollars,
Then, $\quad \frac{x}{2}=$ what he left to his wife,

$$
\frac{x}{6}=\text { what he left to one daughter, }
$$

and, $\quad \frac{2 \cdot x}{6}=\frac{x}{3}$ what he left to both daughtere,
also. $\quad \frac{x}{12}=$ what he left to his servant,
and, $\$ 600=$ ricat he left to the poor.

Then, by the conditions,
$\frac{x}{2}+\frac{x}{3}+\frac{x}{12}+600=x$, the amount of the property,
which gives, $\quad x=\$ 7200$.
10, A and B play together at cards. A sits down with \&84, and \boldsymbol{B} with $\$ 48$. Each loses and wins in turn, when it appears that \boldsymbol{A} has five times as much as \boldsymbol{B}. How much $\operatorname{did} A$ win?
let x denote the number of dollars A won.
Then, A rose with $84+x$ dellars, and $\quad B$ rose with $48-x$ dollars.

But, by the conditions, we have,
hence,
and,

$$
\begin{array}{lrl}
& 84+x & =5(48-x), \\
\text { hence, } & 84+x & =240-5 x ; \\
\text { and, } & 6 x & =156, \\
\text { consequently, } & x & =26 ; \text { or } A \text { won } \$ 26 .
\end{array}
$$

verification.

$$
\begin{gathered}
84+26=110 ; 48-26=22 ; \\
110=5(22)=110
\end{gathered}
$$

11. A can do a piece of work alone in 10 days, B in 13 days; in what time can they do it if they work together?
Denote the time by x, and the work to be done, by 1. Then, in

1 day, A can do $\frac{1}{10}$ of the work, and
B can do $\frac{1}{13}$ of the work; and in
x days, A can do $\frac{x}{10}$ of the work, and
B can do $\frac{x}{13}$ of the work.

Hence, by the conditions,

$$
\frac{x}{10}+\frac{x}{13}=1 \text { which gives, } 13 x+10 x=130 ;
$$

hence, $\quad 23 x=130, \quad x=\frac{130}{23}=5 \frac{1}{2} \frac{5}{3}$ days.
12 A fox, pursued by a hound, has a start of 60 of his own leaps. Three leaps of the hound are equivalent to 7 of the fox; but while the hound makes 6 leaps, the fox makes 9: how many leaps must the hound make to overtake the fox?

There is some difficulty in this problem, arising from the different units which enter into it.

Since 3 leaps of the hound are equal to 7 leaps of the fox, 1 leap of the hound is equal to $\frac{7}{3}$ fox leaps.

Since, while the hound makes 6 leaps, the fox makes 9 , while the hound makes 1 leap, the fox will make $\frac{9}{6}$, or $\frac{3}{2}$ leaps.

Let x denote the number of leaps which the hound makes before he overtakes the fox; and let 1 fox leap denote the unit of distance.
Since 1 leap of the hound is equal to $\frac{7}{3}$ of a fox leap, x leaps will be equal to $\frac{7}{3} x$ fox leaps; and this will denote the distance passed over by the hound, in fox leaps.
Since, while the hound makes 1 leap, the fox makes $\frac{3}{2}$ leaps, while the hound makes x leaps, the fox makes $\frac{3}{2} x$ leaps; and this added to 60 , his distance ahead, will give ${ }_{-}^{3} x+60$, for the whole distance passed over by the fox

Hence, from the conditions,

$$
\begin{aligned}
\frac{7}{3} x & =\frac{3}{2} x+60 ; \text { wnence } \\
14 x & =9 x+360 \\
x & =72
\end{aligned}
$$

The hound, therefore, makes 72 leaps before overtaking the fox; in the same time, the fox makes $72 \times \frac{3}{2}=108$ leaps.

VERIFICATION.

$$
\begin{aligned}
108+60 & =168, \text { whole number of fox leaps, } \\
72 \times \frac{7}{3} & =168
\end{aligned}
$$

13. A father leaves his property, amounting to $\$ 2520$, to four sons, A, B, C, and D. $\quad C$ is to have $\$ 360, B$ as much as C and D together, and A twice as much as B, less $\$ 1000$: how much do A, B, and D receive?

$$
\text { Ans. } A, \$ 760 ; B, \$ 880 ; D, \$ 520 .
$$

14. An estate of $\$ 7500$ is to be divided among a widow, two sons, and three daughters, so that each son shall receive twice as much as each daughter, and the widow herself $\$ 500$ more than all the children: what was her share, and what the share of each child?

$$
\text { Ans. }\left\{\begin{array}{lr}
\text { Widow's share, } & \$ 4000 \\
\text { Each son's, } & 1000 \\
\text { Each daughter's, } & 500
\end{array}\right.
$$

15. A company of 180 persons consists of men, women, and children. The men are 8 more in number than the women, and the children 20 more than the men and women together: how many of each sort in the company?

Ans. 44 men, 36 women, 100 children.
16. A father divides $\$ 2000$ among five sous, so that each elder should receive $\$ 40$ more than his next younger brother : what is the share of the youngest? Ans. \$320.
17. A purse of $\$ 2850$ is to be divided among three per. sons, A, B, and C. A 's share is to be to $B^{\prime} s$ as 6 to 11 , and C is to have $\$ 300$ more than A and B together: what is each one's share? $\quad A ' s, \$ 450 ; B^{\prime} s, \$ 825 ; C^{\prime} s, \$ 1575$.
18. Two pedestrians start from the same point and travel in the same direction; the first steps twice as far as the second, but the second makes 5 steps while the first makes. but one. At the end of a certain time they are 300 feet apart. Now, allowing each of the longer paces to be 3 feet, how far will each have traveled?

Ans. 1st, 200 feet ; 2d, 500.
19. Two earpenters, 24 journeymen, and 8 apprentices received at the end of a certain time $\$ 144$. The carpenters received $\$ 1$ per day, each jourineymàn, half a dollar, and each apprentice, 25 cents: how many days were they employed?

Ans. 9 days.
20. A capitalist receives a yearly income of $\$ 2940$; 'fourfifths of his money bears an interest of 4 per cent., and the remainder of 5 per cent.: how much has he at interest?

Ans. $\$ 70000$.
21. A cistern containing 60 gallons of water has three unequal cocks for discharging it ; the largest will empty it in one hour, the second in two hours, and the third, in three: in what time will the cistern be emptied if they all run together?

Ans. 32 it $^{8} \mathrm{~min}$.
22. In a certain orehard, one-half are apple trees, onefourth peach trees, one-sixth plum trees; there are also, 120 cherry trees, and 80 pear trees: how many trues in the orchard?

Ans. 2400.
23. A farmer being asked how many sheep he had,
answered, that he had them in five fields; in the 1st he had $\frac{1}{6}$, in the $2 \mathrm{~d}, \frac{7}{6}$, in the $3 \mathrm{~d}, \frac{1}{\frac{1}{2}}$, and in the 4th, $\mathrm{I}^{\frac{2}{3}}$, and in the 5 th, 450 : how many had he?

Ans. 1200.
24. My horse and saddle together are worth \$132, and the horse is worth ten times as much as the saddle: what is the value of the horse?

Ans. $\$ 120$.
25. The rent of an estate is this year 8 per cent. greater than it was last. This year it is $\$ 1890$: what was it last year?

Ans. $\$ 1750$.
26. What number is that, from which if 5 be subtracted, $\%$ of the remainder will be 40 ? Ans. 65.
27. A post is $\frac{1}{4}$ in the mud, $\frac{1}{3}$ in the water, and 10 fect above the water: what is the whole length of the post?

Ans. 24 feet.
28. After paying $\frac{1}{6}$ and $\frac{1}{\frac{1}{3}}$ of my money, I had 66 guineas left in my purse : how many guineas were in it at first?

Ans. 120.
29. A person was desirous of giving 3 pence apicee to some beggars, but found he had not money enough in his pocket ly 8 pence; he therefore gave them each 2 pence and had 3 pence remaining: required the number of beggars.

Ans. 11.
30. A person, in play, lost $\frac{1}{4}$ of his money, and then won 3 shillings ; after which he lost $\frac{1}{3}$ of what he then had ; and this done, found that he had but 12 shillings remaining: what had he at first?

Ans. 20 s.
31. Two persons, A and B, lay out equal sums of money in trade; A gains $\$ 126$, and B loses $\$ 87$, and A 's money is then double of I 's : what did each lay out? Ans. $\$ 300$.」
82. A person goes to a tavern with a certain sum of money in his pocket, where he spends 2 shillings: he then borrows as much money as he had left, and going to another tavern, he there spends 2 shillings also; then borrowing
again as much money as was left, he went to a third tavern, where likewise he spent 2 shillings, and borrowed as much as he had left: and again spending 2 shillings at a fourth tavern, he then had nothing remaining. What had he at first? Ans. 3s. 9d.
33. A tailor cut 19 yards from each of three equal pieces of cloth, and 17 yards from another of the same length, and found that the four remnants were together equal to 142 yards. How many yards in each piece? Ans. 54.
34. A fortress is garrisoned by 2600 men, consisting of infantry, artillery, and cavalry. Now, there are nine times as many infantry, and three times as many artillery soldiers as there are cavalry. How many are there of each corps?

Ans. 200 cavalry; 600 artillery; 1800 infantry.
35. All the journeyings of an individual amounted to 2970 miles. Of these he traveled $3 \frac{1}{2}$ times as many by water as on horseback, and $2 \frac{1}{4}$ times as many on foot as by water. How many miles did he travel in each way?

Ans. 240 miles; $840 \mathrm{~m} . ; 1890 \mathrm{~m}$.
36. A sum of money was divided between two persons, A and B. A's share was to $B^{\prime} s$ in the proportion of 5 to 3 , and exceeded five-ninths of the entire sum by 50 . What was the share of each? Ans. A's share, $450 ; B ' s, 270$.
37. Divide a number a into three such parts that tho second shall be n times the first, and the third m times as great as the first.

$$
\text { 1st, } \frac{a}{1+m+n} ; 2 \mathrm{~d}, \frac{n a}{1+m+n} ; 3 \mathrm{~d}, \frac{m a}{1+m+n} .
$$

38. A father directs that $\$ 1170$ shall be divided among his three sons, in proportion to their ages. The oldest is twice as old as the youngest, and the second is one-third older than the youngest. How much was each to receive? Ans. $\$ 270$, youngest; $\$ 330$, second ; $\$ 540$, oldest.
39. Three regiments are to furnish 594 men, and each to furnish in proportion to its strength. Now, the strength of the first is to the second as 3 to 5 ; and that of the second to the third as 8 to 7 . How many must each furnish?

Ans. 1st, 144 men ; 2d, 240; 3d, 2!.
40. Five heirs, A, B, C, D, and E, are to divide an ink er itance of $\$ 5600$. B is to receive twice as much as A, and \$200 more; C three times as much as A, less $\$ 400 ; D$ the half of what B and C receive together, and 150 more; and E the fourth part of what the four others get, plus $\$ 475$. How much did each receive?

$$
A^{\prime} s, \$ 500 ; B^{\prime} s, 1200 ; C^{\prime} s, 1100 ; D^{\prime} s, 1300 ; E^{\prime} s, 1500
$$

741. A person has four casks, the second of which being filled from the first, leaves the first fouy-sevenths full. The third being filled from the second, leaves it one-fourth full, and when the thind is emptied into the fourth, it is found to fill enly nine-sixteenths of it. But the first will fill the third and fourth, and leave 15 quarts remaining. How many gallons does each hold?

Ans. 1st, 35 gal. ; 2d, 15 gal. ; 3d, $11 \frac{1}{6}$ gal. ; 4th, 20 gal.
42. A courier having started from a place, is pursued by a second after the lapse of 10 days. The first travels 4 miles a day, the other 9 . How many days before the second will overtake the first?

Ans. 8.
43. A courier goes $31 \frac{1}{2}$ miles every five hours, and is followed by another after he had been gone eight hours. The second travels $22 \frac{1}{2}$ miles every three hours. How many hours before he will overtake the first? Ans. 42.
44. Two places are eighty miles apart, and a person leaves one of them and travels towards the other at the rate of $3 \frac{1}{3}$ miles per hour. Eight hours after, a person departs from
the second place, and travels at the rate of $5 \frac{1}{6}$ miles per hour How long before they will be together?

Ans. 6 hours

Equations containtig two unknown quantities,
1e. If we have a single equation, as,

$$
2 x+3 y=21
$$

containing two unknown quantities, x and y, we may find the value of one of them in terms of the other, as,

$$
x=\frac{21-3 y}{2} \cdot . \quad \cdot \quad \cdot(1 .)
$$

Now, if the value of y is unknown, that of x will also be unknown. Hence, from a single equation, containing two unknown quantities, the value of x cannot be determined.

If we have a second equation, as,

$$
5 x+4 y=35
$$

we may, as before, find the value of x in terms of y, giving,

$$
x=\frac{35-4 y}{5} \cdot \cdot \cdot \cdot \cdot(2 .)
$$

Now, if the values of x and y are the same in Equations (1) and (2), the second members may be placed equal to each other, giving,

$$
\frac{21-3 y}{2}=\frac{35-4 y}{5}, \text { or } 105-15 y=70-8 y
$$

from which we find, $\quad y=5$.
110. In one equation containing two unknown quantities, can you find the value of either? If you have a second equation involving the same two unknown quantities, cun you find their values? What are such equations called?

Subtituting this value for y in Equations (1) or (2), we find $x=3$. Such equations are called Simultaneous equations. Hence,
111. Simulaneous Equations are those in which the ralues of the unknown quantity are the same in both.

ELLMINATION.

112. Elimination is the operation of combining tiro equations, containing two unknown quantities, and deducing therefrom a single equation, containing but one.

There are three principal methods of elimination:
1 st. By addition or subtraction.
2d. By substitution.
3d. By comparison.
We shall consider these methods separately.

> Elimination by Addition or Subtraction.

1. Take the two equations,

$$
\begin{aligned}
& 3 x-2 y=7 \\
& 8 x+2 y=48
\end{aligned}
$$

If we add these two equations, member to member, we obtain,

$$
11 x=55
$$

which gives, by dividing by 11,

$$
x=5
$$

and substituting this value in eitber of the given equations, we find,

$$
y=4
$$

[^26]2. Again, take the equations,
\[

$$
\begin{aligned}
& 8 x+2 y=48 \\
& 3 x+2 y=23
\end{aligned}
$$
\]

If we subtract the 2 d equation from the 1 st , we obtain,

$$
5 x=25 ;
$$

which gives, by dividing by 5 ,

$$
x=5 \text {; }
$$

and by substituting this value, we find,

$$
y=4
$$

3. Given the sum of two numbers equal to s, and their difference equal to d, to find the numbers.

Let $x=$ the greater, and y the less number.
Then, by the conditions, $x+y=s$.
and, $x-y=d$.
By adding (Art. 102, Ax. 1), $2 x=s+d$.
By subtracting (Art. 102, Ax. 2), . . $2 y=s-d$.
Each of these equations contains but one unknown quantity.
From the first, we obtain, $x=\frac{s+d}{2}$,
and from the second, $y=\frac{s}{-\frac{-d}{2}}$.
These are the same values as were found in Prob. 7, page 120.
4. A person engaged a workman for 48 days. For each day. that he labored he was to receive 24 cents, and for cach day that he was idle he was to pay 12 cents for his toard. At the end of the 48 days the account was settled, when the laborer received 504 cents. Required the number of work. ing days, and the number of days he was idle.

Let $\quad x=$ the number of working days,
$y=$ the number of idle days.
Then, $\quad 24 x=$ what he earned,
and,
$12 y=$ what he paid for his board.
Then, by the conditions of the question, we have,
and,

$$
\begin{array}{r}
x+y=48 \\
24 x-12 y=504
\end{array}
$$

This is the statement of the problem.
It has already been shown (Art. 102, Ax. 3), that the two members of an equation may be multiplied by the same number, without destroying the equality. Let, then, the first equation be multiplied by 24 , the coefficient of x in the second; we shall then have,
and by subtracting, $\begin{aligned} 24 x+24 y & =1152 \\ 24 x-12 y & =504 \\ 36 y & =648 \\ \therefore y & =\frac{648}{36}=18 .\end{aligned}$
Substituting this value of y in the equation,

$$
24 x-12 y=504, \text { we have, } 24 x-216=504 ;
$$

which gives,

$$
24 x=504+216=720, \quad \text { and } x=\frac{720}{24}=30 .
$$

terificatiun.

$$
\begin{aligned}
x+y & =48 & \text { gives } & 30+18=48 \\
24 x-12 y & =504 & \text { gives } & 24 \times 30-12 \times 18=504
\end{aligned}
$$

113. In a similar manner, either unknown quantity may be eliminated from either equation; hence, the following

RULE.

I. Prepare the equations so that the coefficients of the quantity to be eliminated shall be numerically equal:
II. If the signs are unlike, add the equations, member to member; if alike, subtract them, member from member.

EXAMPLES.

Find the values of x and y, by addition or subtraction, in the following simultanecus equations:

$$
\begin{aligned}
& \text { 5. }\left\{\begin{array}{l}
3 x-y=3 \\
y+2 x=7
\end{array}\right\} \\
& \text { Ans. } x=2, y=3 . \\
& \text { 6. }\left\{\begin{array}{l}
4 x-7 y=-22 \\
5 x+2 y=37
\end{array}\right\} \\
& \text { (ns. } x=5, y=6 . \\
& \text { 7. }\left\{\begin{array}{l}
2 x+6 y=42 \\
8 x-6 y=3
\end{array}\right\} \\
& \text { Ans. } x=4 \frac{1}{2}, y=5 \frac{1}{2} \text {. } \\
& \text { 8. }\left\{\begin{array}{l}
8 x-9 y=1 \\
6 x-3 y=4 x
\end{array}\right\} \\
& \text { Ans. } x=\frac{1}{2}, y=\frac{1}{3} \text {. } \\
& \text { 9. }\left\{\begin{aligned}
14 x-15 y & =12 \\
7 x+8 y & =37
\end{aligned}\right\} \\
& \text { Ans. } x=3, y=2 \text {. } \\
& \text { 10. }\left\{\begin{array}{l}
\frac{1}{2} x+\frac{1}{3} y=6 \\
\frac{1}{3} x+\frac{1}{2} y=6 \frac{1}{2}
\end{array}\right\} \\
& \text { Ans. }\{x=6, y=9 \text {. } \\
& \text { 11. }\left\{\begin{array}{l}
\frac{1}{7} x+\frac{1}{8} y=4 \\
x-y=-2
\end{array}\right\} \\
& \text { 4ns. }\{x=14, y=16 \text {. }
\end{aligned}
$$

118. What is the rule for elimination by addition or subtraction?
119. Says A to B, you give me $\$ 40$ of your money, and I shall then have five times as much as you will have lett. Now they both had $\$ 120$: how much had each?

Ans. Each had \$00.
13 A father says to his son, "twenty years ago, my age was four times yours; now it is just double:" what were their ages? Ans. $\left\{\begin{array}{l}\text { Father's, } 00 \text { years } \\ \text { Son's, } \\ 30 \text { years }\end{array}\right.$
14. A father diviled his property between his two sons. At the end of the first year the elder had spent one-quarter of his, and the younger had made $\$ 1000$, and their property was then equal. After this the elder spent $\$ 500$, and the younger made $\$ 2000$, when it appeared that the younger had just double the elder: what had each from the father?

$$
\text { Ans. }\left\{\begin{array}{l}
\text { Elder, } \$ 4000 . \\
\text { Younger, } \\
\$ 2000 .
\end{array}\right.
$$

15. If John give Charles 15 apples, they will have the same number; but if Charles give 15 to John, John will have 15 times as many, wanting 10, as Charles will have left. How many has each?

$$
\text { Ans. } \begin{cases}\text { John, } & 50 . \\ \text { Charles, } & 20 .\end{cases}
$$

16. Two clerks, A and B, have salaries which are together equal to $\$ 900$. A spends Th $^{\prime}$ per year of what he receives, and B adds as much to his as A spends. At the end of the year they have equal sums: what was the salary of each?

$$
\text { Ans. }\left\{\begin{array}{l}
A^{\prime} s=\$ 500 . \\
B^{\prime} s=\$ 40 .
\end{array}\right.
$$

Elimination by Substitution.

111. Let us again take the equations,

$$
\begin{array}{r}
5 x+7 y=43 \\
11 x+9 y=69 \tag{2.}
\end{array}
$$

[^27]Find the value of x in the first equation, which gives,

$$
x=\frac{43-7 y}{5}
$$

Substitute this value of x in the second equation, and we have,

$$
\begin{aligned}
11 \times \frac{43-7 y}{5}+9 y & =69 ; \\
\text { or, } \quad 473-77 y+45 y & =345 ; \\
\text { or, } \quad-32 y & =-128 .
\end{aligned}
$$

Here, x has been eliminated by substitution.
In a similar manner, we can eliminate any unknown quantity ; hence, the

RULE.

I. Find from either equation the ralue of the unknown quantity to be eliminated:
II. Substitute this value for that quantity in the other equation.
Note. - This method of elimination is used to great advantage when the coefficient of either of the unknown quantities is 1 .

EXAMPLES.

Find, by the last method, the values of x and y in the following equations:

$$
\begin{aligned}
& \text { 1. } 3 x-y=1, \text { and } \begin{array}{l}
3 y-2 x=4 \\
\text { Ans. } x=1, y=2
\end{array}
\end{aligned}
$$

2. $5 y-4 x=-22$, and $3 y+4 x=38$.

$$
\text { Ans. } x=8, y=2 \text {. }
$$

3. $x+8 y=18$, and $y-3 x=-29$.

$$
\text { Ans. } x=10, y=1
$$

4. $5 x-y=13$, and $8 x+\frac{2}{9} y=29$.

$$
\text { Ans. } x=3 \frac{1}{2}, y=4 \frac{1}{2}
$$

5. $10 x-\frac{y}{5}=69$, and $10 y-\frac{x}{7}=49$.

$$
\text { Ans. } x=7, y=5
$$

B. $x+\frac{1}{2} x-\frac{y}{5}=10$, and $\frac{x}{8}+\frac{y}{10}=2$. Ans. $x=8, y=10$.
7. $\frac{y}{7}-\frac{x}{3}+5=2, x+\frac{y}{5}=17 \frac{4}{5}$.

$$
\text { Ans. } x=15, y=14
$$

8. $\frac{y}{2}+\frac{x}{3}+3=6 \%$ and $\frac{y}{4}-\frac{x}{7}=\frac{1}{2}$.

$$
\text { Ans. } x=3 \frac{1}{2}, y=4
$$

9. $\frac{y}{8}-\frac{x}{4}+6=5$, and $\frac{x}{12}-\frac{y}{16}=0$.

$$
\text { Ans. } x=12, y=16
$$

10. $\frac{y}{7}-\frac{3 x}{2}-1=-9$, and $5 x-\frac{7 y}{49}=29$.

$$
\text { Ans. } x=6, y=7
$$

11. Two misers, A and B, sit down to count over their money. They both have $\$ 20000$, and B has three times as much as λ : how much has each ?

$$
\text { Ans. }\left\{\begin{array}{l}
A, \$ 5000 . \\
B, \$ 15000 .
\end{array}\right.
$$

12. A person has two purses. If he puts $\$ 7$ into the firsh, the whole is worth three times as much as the second purse: but if he puts $\$ 7$ into the second, the whole is worth five times as much as the first: what is the value of each purse? Ans, 1st, \$2; 2d, \$3.
13. Two numbers have the following relations: if the first be multiplied by 6 , the product will be equal to the second multiplied by 5 ; and 1 subtracted from the first leaves the same remainder as 2 subtracted from the second: what are the numbers?

Ans. 5 and 6.
14. Find two numbers with the following relations: the cirst increased by 2 is $3 \frac{1}{4}$ times as great as the second; and the second increased by 4 gives a number equal to half the first: what are the numbers? Ans. 24 and 8.
15. A father says to his son, "twelve jears ago, I was twice as old as you are now: four times your age at that time, plus twelve years, will express my age twelve years hence:" what were their ages? Ans. $\begin{cases}\text { Father, } & 72 \text { years. } \\ \text { Son, } & 30\end{cases}$

Elimination by Comparison.

115. Take the same equations,

$$
\begin{aligned}
5 x+7 y & =43 \\
11 x+9 y & =69
\end{aligned}
$$

Finding the value of x from the first equation, we have,

$$
x=\frac{43-7 y}{5}
$$

and finding the value of x from the second, we obtain,

$$
x=\frac{69-9 y}{11}
$$

115. Five the rule for elimination by comparison.

Let these two values of x be placed equal to each other, and we have,

$$
\frac{43-7 y}{5}=\frac{69-9 y}{11}
$$

Or,

$$
\begin{aligned}
473-77 y & =345-45 y ; \\
-32 y & =-128 .
\end{aligned}
$$

Hence,

$$
y=4
$$

And,

$$
x=\frac{69-36}{11}=3 .
$$

This method of elimination is called the method by comparison, for which we have the following

'RULE.

I. Find, from each equation, the value of the same unknown quantity to be eliminated:
II. Place these values equal to each other.

EXAMPLES.

Find, by the last rule, the values of x and y, from the following equations,

1. $3 x+\frac{y}{5}+6=42$, and $y-\frac{x}{22}=14 \frac{1}{2}$.

$$
\text { Ans. } x=11, y=15
$$

2. $\frac{y}{4}-\frac{x}{7}+5=6$, and $\frac{y}{5}+4=\frac{x}{14}+6$.

$$
\text { Ans. } x=28, y=20 \text {. }
$$

3. $\frac{y}{10}-\frac{2}{4}+\frac{22}{8}=1$, and $3 y-x=6$.

$$
\text { Ans. } x=9, y=5 \text {. }
$$

4. $y-3=\frac{1}{2} x+5$ and $\frac{x+y}{2}=y-3 \frac{1}{2}$. Ans. $x=2, y=9$
5. $\frac{y-x}{3}+\frac{x}{2}=y-2$, and $\frac{x}{8}+\frac{y}{7}=x-13$.

$$
\text { Ans. } x=16, y=7
$$

6. $\frac{y+x}{2}+\frac{y-x}{2}=x-\frac{2 y}{3}$, and $x+y=16$.

$$
\text { Ans. } x=10, y=6
$$

7. $\frac{2 x-3 y}{5}=x-2 \frac{3}{5}, x-\frac{y-1}{2}=0$. Ans. $x=1, y=3$.
8. $2 y+3 x=y+43, y-\frac{x-4}{3}=y-\frac{x}{5}$.

$$
\text { Ans. } x=10, y=13
$$

9. $4 y-\frac{x-y}{2}=x+18$, and $27-y=x+y+4$.

$$
\text { Ans. } x=9, y=7
$$

10. $1-\frac{y-x}{6}+4=y-16 \frac{2}{3}, \frac{y}{5}-2=\frac{x}{5}$.

$$
\text { Ans. } x=10, y=20
$$

116 Having explained the principal methods of elimination, we shall add a few examples which may be solved by any one of them; and often indeed, it may be advantageous to employ them all, even in the same example.

GENERAL EXAMPLES.

Find the values of x and y in the following simultancous equations:

1. $2 x+3 y=16$, and $3 x-2 y=11$.

$$
\text { Ans. } x=5, y=2
$$

2. $\frac{2 x}{5}+\frac{3 y}{4}=\frac{9}{20}$, and $\frac{3 x}{4}+\frac{2 y}{5}=\frac{61}{120}$.

$$
\text { Ans. } x=\frac{1}{2}, y=\frac{1}{3} \text {. }
$$

3. $\frac{x}{7}+7 y=99$, and $\frac{y}{7}+7 x=51$.

$$
\text { Ans. } x=7, y=14
$$

4. $\frac{x}{2}-12=\frac{y}{4}+8, \frac{x+y}{5}+\frac{x}{3}-8=\frac{2 y-x}{4}+27$. Ans. $x=60, y=40$.
5. $\left\{\begin{array}{l}x-\frac{1}{2} y+\frac{4 x}{5}=6 \frac{1}{3} \\ \frac{x-y}{2}+7 x=41\end{array}\right\}$

Ans. $\left\{\begin{array}{l}x=6 . \\ y=8\end{array}\right.$
6. $\left\{\begin{array}{c}\frac{x-y}{4}+\frac{x+y}{5}=2 \frac{1}{10} \\ \frac{1}{2} x-y+4 \frac{1}{4} y=12 \frac{7}{6}\end{array}\right\}$

Ans. $\left\{\begin{array}{l}x=5 . \\ y=5 .\end{array}\right.$
7. $\left\{\begin{array}{l}\frac{2 y-x}{6}+\frac{2 x-y}{4}=5 \\ 6 x-y+\frac{8-2 x}{4}=43 \frac{1}{2}\end{array}\right\}$

Ans. $\left\{\begin{array}{l}x=9 . \\ y=8 .\end{array}\right.$
8. $\left\{\frac{3 x-8}{4}+\frac{y-6}{5}+y=18{ }^{\frac{7}{16}}\right\}$

Ans. $\left\{\begin{array}{l}x=10 . \\ y=12\end{array}\right.$
9. $\left\{\begin{array}{l}\frac{4 x-4}{3}-\frac{y-5}{4}+6=12 \frac{2}{3} \\ \frac{1}{3} x-\frac{1}{5} y+\frac{y-4}{3}=3\end{array}\right\}$

Ans. $\left\{\begin{array}{l}x=6 . \\ y=5 .\end{array}\right.$
10. $\left\{\begin{array}{l}a x-b y=c \\ a-y+x=c\end{array}\right\} \quad$ Ans. $\left\{\begin{array}{l}x=\frac{c+a b-b d}{a-b} . \\ y=\frac{a^{2}+c-a d}{a-b} .\end{array}\right.$
11. $\left\{\begin{array}{c}13 x+7 y-341=7 \frac{1}{2} y+43 \frac{1}{2} x \\ 2 x+\frac{1}{2} y=1\end{array}\right\}$ Ans. $\left\{\begin{array}{l}x=-12 \\ y=50 .\end{array}\right.$
12. $\left\{\begin{array}{l}(x+5)(y+7)=(x+1)(y-9)+112 \\ 2 x+10=3 y+1\end{array}\right\}$ Ans. $\left\{\begin{array}{l}x=3 . \\ y=5\end{array}\right.$
13. $\left\{\begin{aligned} a x & =b y \\ x+y & =c\end{aligned}\right\}$

Ans. $\left\{\begin{array}{l}x=\frac{b c}{a+b} \\ y=\frac{a c}{a+b}\end{array}\right.$
14. $\left\{\begin{array}{l}a x+b y=c \\ f x+g y=h\end{array}\right\}$

Ans. $\left\{\begin{array}{l}x=\frac{c g-b h}{a g-b f} \\ y=\frac{a h-c f}{a g-b f}\end{array}\right.$.
15. $\left\{\begin{array}{l}\frac{a}{b+y}=\frac{b}{3 a+x} \\ a x+2 b y=d\end{array}\right\} \quad$ Ans. $\left\{\begin{array}{l}x=\frac{2 b^{2}-6 a^{2}+d}{3 a} . \\ y=\frac{3 a^{2}-b^{2}+d}{3 b} .\end{array}\right.$
16. $\left\{\begin{array}{l}b c x=c y-2 b \\ b^{2} y+\frac{a\left(c^{3}-b^{3}\right)}{b c}=\frac{2 b^{3}}{c}+c^{3} x\end{array}\right\}$ Ans. $\left\{\begin{array}{l}x=\frac{a}{b c} . \\ y=\frac{a+2 b}{c}\end{array}\right.$

1ヶ. $\left\{\begin{array}{l}3 x+5 y=\frac{(8 b-2 f) b f}{b^{2}-f^{2}} \\ y-x=\frac{-2 b f^{2}}{b^{2}-f^{2}}\end{array}\right\}$
Ans. $\left\{\begin{array}{l}x=\frac{b f}{b-f} \\ y=\frac{b f}{b+f}\end{array}\right.$

PROBLEMS.

1. What fraction is that, to the numerator of which if 1 lie addel, the value will be $\frac{1}{3}$, but if 1 be added to its denominator, the value will be $\frac{1}{4}$?
Let the fraction be denoted by $\frac{x}{y}$.
Then, by the conditions,

$$
\begin{aligned}
\frac{x+1}{y} & =\frac{1}{3}, \text { and, } \frac{x}{y+1}=\frac{1}{4} . \\
\text { whence, } \quad 3 x+3 & =y, \text { and } 4 x=y+1 .
\end{aligned}
$$

Therefore, by subtracting,

$$
x-3=1, \text { and } x=4
$$

Hence,

$$
\begin{aligned}
12+3 & =y ; \\
\therefore y & =15 .
\end{aligned}
$$

2. A market-woman bought a certain number of eggs at 2 for a penny, and as many others at 3 for a penny; and having sold them all together, at the rate of 5 for $2 d$, found that she had lost $4 d$: how many of both kinds did she buy?
Let $2 x$ denote the whole number of eggs.
Then, $\quad x=$ the number of eggs of each sort.
Then will, ${ }_{2}^{1} x=$ the cost of the first sort,
and,

$$
\frac{1}{3} x=\text { the cost of the second sort. }
$$

But, by the conditions of the question,

$$
5: 2 x:: 2: \frac{4 x}{5}
$$

hence, $\frac{4 x}{5}$ will denote the amount for whick the eggs were sold.

But, by the conditions,

$$
\frac{1}{2} x+\frac{1}{3} x-\frac{4 x}{5}=4 ;
$$

therefore, $\quad 15 x+10 x-24 x=120$;

$$
\therefore x=120 \text {; the number of eggs of each sort. }
$$

3. A person possessed a capital of 30,000 dollars, for which he received a certain interest; but he owed the sum of 20,000 dollars, for which he paid a certain annual interest. The interest that he received exceeded that which he paid by 800 dollars. Another person possessed 35,000 dollars, for which he received interest at the second of the above rates; but he owed 24,000 dollars, for which he paid interest at the first of the ahove rates. The interest that he received, annually, exceeded that which he paid, by 310 dollars. Required the two rates of interest.
Let x denote the number of units in the first rate of interest, and y the unit in the second rate. Then each may be regarded as denoting the interest on $\$ 100$ for 1 year.

To obtain the interest of $\$ 30,000$ at the first rate, denoted by x, we form the proportion,

$$
100: 30,000:: x: \frac{30,000 x}{100} \text {, or } 300 x .
$$

And for the interest of $\$ 20,000$, the rate being y,

$$
100: 20,000:: y: \frac{20,000 y}{100}, \text { or } 200 y .
$$

But, by the conditions, the difference between these two amounts is equal to 800 dollars.

We have, then, for the first equation of the problem,

$$
300 x-200 y=800
$$

By expressit algebraically, the second condition of the problem, we of tha second equation,

$$
0 y-240 x=310
$$

Both members of t, frst equation being divisible by 100 and those of the conc 10, we have,

$$
3 x-2 y=8, \quad 35 y-24 x=31
$$

To eliminate x, multiply the first equation by 8 , and then add the result to the second; there results,

$$
19 y=95, \quad \text { whence }, \quad y=5
$$

Substruting for y, in the first equation, this vaiue, and that equation becomes,

$$
3 x-10=8, \text { whence, } x=6
$$

Therefore, the first rate is 6 per cent, and the second 5 .

verification.

$\$ 30,000$, at 6 per cent, gives $30,000 \times .06=\$ 1800$. $\$ 20,000$, $5 \quad$ " $20,000 \times .05=\$ 1000$.
And we have, $\quad 1800-1000=800$.
The second condition can be verified in the same manner.
4. What two numbers are those, whose difference is 7, and sum 33 ?

Ans. 13 and 20.
5. Divide the number 75 into two such parts, that three times the greater may exceed seven times the less by 15 .

Ans. 54 and 21.
6. In a mixture of wine and cider, $\frac{1}{2}$ of the whole plus 25 gallons was wine, and $\frac{1}{3}$ part minus 5 gallons was cider: how many gallons were there of each? Ans. 85 of wine, and 35 of cider.
7. A bill of $£ 120$ was paid in guineas and moidores, and the number of pieces used, of both sorts, was just 100. If the guinea be estimated at $21 s$, and the moidore at $27 s$, how many pieces were there of each sort? Ans. 50 .
8. Two travelers set out at the same time from London and York, whose distance apart is 150 miles. One of them travels 8 miles a day, and the other 7: in what time will they meet?

Ans. In 10 days.
9. At a certain election, 375 persons voted for two candidates, and the candidate chosen had a majurity of 91 : how many voted for each ?

Ans. 233 for one, and 142 for the other.
10. A person has two horses, and a saddle worth $£ 50$. Now, if the saddle be put on the back of the first horse, it makes their joint value double that of the second horse; but if it be put on the back of the second, it makes their joint value triple that of the first: what is the value of each horse?

Ans. One $£ 30$, and the other $£ 40$.
11. The hour and minute hands of a clock are exactly together at 12 o'clock: when will they be again together?

Ans. 1h. $5_{\frac{5}{11}} \mathrm{~m}$ -
12. A man and his wife usually drank out a cask of beer in 12 days; but when the man was from home, it lasted the woman 30 days: how many days would the man alone be in drinking it?

Ans. 20 days.
13. If 32 pounds of sea-water contain 1 pound of salt, how much fresh water must be added to these 32 pounds, in order that the quantity of salt contained in 32 pounds of the new misture shall be reduced to 2 ounces, or $\frac{1}{8}$ of a pound?

Ans. 224 llss.
14. A person who possessed 100,000 dollars, placed the greater part of it nut at 5 per cent interest, and the other
at 4 per cent. The interest which he received for the whole, amounted to 4640 dollars. Required the two parts.

Ans. $\$ 64,000$ and $\$ 3 \dot{u}, 000$.
15. At the close of an election, the successful candidate had a majority of 1500 votes. Had a fourth of the votes of the unsuccessful candidate been also given to him, he would have received three times as many as his competitor, wanting three thousand five hundred : how many votes did each receive?

$$
\text { Ans. }\left\{\begin{array}{l}
1 \mathrm{st}, 6500 . \\
2 \mathrm{~d}, 5000
\end{array}\right.
$$

16. A gentleman bought a gold and a silver watch, and a chain worth $\$ 25$. When he put the chain on the gold watch, it and the chain became worth threc and a half times more than the silver watch; but when he put the chain on the silver watch, they became worth one-half the gold watch and 15 dollars over: what was the value of each watch?

$$
\text { Ans. }\left\{\begin{array}{l}
\text { Gold watch, } \$ 80 \\
\text { Silver } 6 \quad \$ 30
\end{array}\right.
$$

17. There is a certain number expressed by two figures, which figures are called digits. The sum of the digits is 11, and if 13 be added to the first digit the sum will be three times the second: what is the number?

Ans. 56.
18. From a company of ladies and gentlemen 15 ladies retire; there are then left two gentlemen to each lady. After which 45 gentlemen depart, when there are left 5 ladies to each gentleman: how many were there of each at first?

$$
\text { Ans. }\left\{\begin{array}{l}
50 \text { gentlemen. } \\
40 \text { ladies. }
\end{array}\right.
$$

19. A person wishes to dispose of his horse by lottery. It he sells the tickets at $\$ 2$ each, he will lose $\$ 30$ on his bores: but if he sells them at $\$ 3$ each, he will receive $\$ 30$
more than his horse cost him. What is the value of the. horse, and number of tickets? Ans. $\left\{\begin{array}{l}\text { Horse, } \$ 150 . \\ \text { No. of tickets, } 60 .\end{array}\right.$
20. A person purchases a lot of wheat at $\$ 1$, and a lot of rye at 75 cents per bushel ; the whole costing him $\$ 117.50$. He then sells $\frac{1}{4}$ of his wheat and $\frac{1}{5}$ of his rye at the same rate, and realizes $\$ 27.50$. How much did he buy of each?

$$
\text { Ans. }\left\{\begin{array}{l}
80 \text { bush. of wheat. } \\
50 \text { bush. of rye. }
\end{array}\right.
$$

21. There are 52 pieces of money in each of two bags. A takes from one, and B from the other. A takes twice as much as B left, and B takes 7 times as much as A left. How much did each take? $A n s .\left\{\begin{array}{l}A, 48 \text { pieces. } \\ B, 28 \text { pieces. }\end{array}\right.$
22. Two persons, A and B, purchase a house together, worth $\$ 1200$. Says A to B, give me two-thirds of your money and I can purchase it alone; but, says B to A, if you will give me three-fourths of your money I shall be able to purchase it alone. How much had each?

Ans. $A, \$ 800 ; B, \$ 600$.
23. A grocer finds that if he mixes sherry and brandy in the proportion of 2 to 1 , the mixture will be worth $78 s$. per dozen; but if he mixes them in the proportion of 7 to 2 , he can get 79s. a dozen. What is the price of each liquor per dozen?

Ans. Sherry, 81s.; brandy, 72s.

Equations containing three or more unknown quantities.

- 11\%. Let us now consider equations involving three or more unknown quantities.

Take the group of simultaneous equations,

[^28]\[

$$
\begin{align*}
& 5 x-6 y+4 z=15, \\
& 7 x+4 y-3 z=19, \\
& 2 x+y+6 z=46 . \tag{3.}
\end{align*}
$$ \quad . \quad . \quad . \quad(1 .)
\]

To eliminate 2 by means of the first two equations, multiply the first by 3 , and the second by 4 ; then, since the coeflicients of z have contrary signs, add the two results together. This gives a new equation:

$$
\begin{equation*}
43 x-23=121 \tag{4.}
\end{equation*}
$$

Multiplying the second equation by 2 (a factor of the coefficient of z in the third equation), and adding the result to the third equation, we have,

$$
\begin{equation*}
16 x+9 y=84 \tag{5.}
\end{equation*}
$$

The question is then reduced to finding the values of x and y, which will satisfy the new Equations (4) and (5).

Now, if the first be multiplied by 9 , the second by 2 , and the results added together, we find,

$$
419 x=1257 ; \text { whence, } x=3
$$

We might, by means of Equations (4) and (5) determine y in the same way that we have determined x; but the value of y may be determined more simply, by substituting the value of x in Equation (5); thus,

$$
48+9 y=84 . \quad \therefore y=\frac{84-49}{9}=4
$$

In the same manner, the first of the three given equations becomes, by substituting the values of x and y,

$$
15-24+4 z=15 \quad \therefore z=\frac{24}{4}=0
$$

In the same way, any group of simultantous equations may be solved Hence, the

RULE.

I. Combine one equation of the group with each of the others, by eliminating one unknowon quantity; there will result a new group containing one equation less than the original group:
II. Combine one equation of this new group with earh of the others, by eliminating a second unknown quantity; there will result a new group containing two equations less than the original group:
III. Continue the operation until a single equation is found, containing but one unknown quantity:
IV. Find the value of this unknown quantity by the preceding rules; substitute this in one of the group of twoo equations, and find the value of a second unknown quantity; substitute these in either of the group of three, .finding a third unknown quantity; and so on, till the values of all are found.

Notes.-1. In order that the value of the unknown quanlities may be determined, there must be just as many independent equations of condition as there are unknown quantities. If there are fewer equations than unknown quantities, the resulting equation will contain at least two unknown quantities, and hence, their values cannot be found (Art. 110). If there are more equations than unknown quantities, the conditions may be contradictory, and the equations impossible.
2. It often happens that each of the proposed equations does not contain all the unknown quantities. In this case, with a little address, the elimination is very quickly performed.

Take the four equations involving four unknown quanti. ties:

$$
\begin{aligned}
& 2 x-3 y+2 z=13 . \\
& 4 u-2 x=30 . 4 y+2 z=14
\end{aligned}
$$

By inspecting these equations, we see that the elimination of z in the two Equations, (1) and (3), will give an equar tion iuvolving x and y; and if we eliminate u in Equar tions (2) and (4), we shall obtain a second equation, involving x and y. These last two unknowu quantities may therefore be easily determined. In the first place, the elimination of z from (1) and (3) gives,

$$
7 y-2 x=1 \text {; }
$$

That of u from (2) and (4) gives,

$$
20 y+6 x=38
$$

Multiplying the first of these equations by 3 , and adding,

$$
\begin{aligned}
41 y & =41 \\
y & =1
\end{aligned}
$$

Substituting this value in $7 y-2 x=1$, we find,

$$
x=3 .
$$

Substituting for x its value in Equation (2), it becomes

$$
\begin{gathered}
4 u-6=30 . \\
u=9 .
\end{gathered}
$$

Whence,
And substituting for y its value in Equation (3), there results,

$$
z=5 .
$$

EXAMPLES.

1. Given $\left\{\begin{array}{c}x+y+z=29 \\ x+2 y+3 z=62 \\ \frac{1}{2} x+\frac{1}{3} y+\frac{1}{4} z=10\end{array}\right\}$ to find x, y, and z.

$$
\text { Ans. } x=8, y=9, z=12 \text {. }
$$

2. Given $\left\{\begin{array}{l}2 x+4 y-3 z=22 \\ 4 x-2 y+5 z=18 \\ 6 x+7 y-z=63\end{array}\right\}$ to find x, y, and z.

$$
\text { Ans. } x=3, y=7 s z=4
$$

3. Given $\left\{\begin{array}{r}x+\frac{1}{2} y+\frac{1}{3} z=32 \\ \frac{1}{3} x+\frac{1}{4} y+\frac{1}{5} z=15 \\ \frac{1}{4} x+\frac{1}{5} y+\frac{1}{6} z=12\end{array}\right\}$ to find x, y, and z

$$
\text { Ans. } x=12, y=20, z=30
$$

4. Given $\left\{\begin{array}{l}x+y+z=29 \frac{1}{4} \\ x+y-z=18 \frac{1}{4} \\ x-y+z=13 \frac{3}{4}\end{array}\right\}$ to find x, y, and z.

Ans. $x=16, y=7 \frac{3}{4}, z=5 \frac{1}{2}$.
5. Given $\left\{\begin{array}{l}3 x+5 y=161 \\ 7 x+2 z=209 \\ 2 y+z=89\end{array}\right\}$ to find x, y, and z.

$$
\text { Ans. } x=\div 7, \quad y=22, z=45
$$

6. Given $\left\{\begin{array}{l}\frac{1}{x}+\frac{1}{y}=a- \\ \frac{1}{x}+\frac{1}{z}=b \\ \frac{1}{y}+\frac{1}{z}=c\end{array}\right\}$ to find x, y, and z.

$$
x=\frac{2}{a+b-c}, \quad y=\frac{2}{a+c-b}, \quad z=\frac{2}{b+c-a}
$$

Note.-In this example we should not proceed to clear the equation of fractions; but subtract immediately the second equation from the first, and then add the third: we thus find the value of y.

PROBLEMS.

1. Divide the number 90 into four such parts, that the first increased by 2 , the second diminished by 2 , the third multiplied by 2 , and the fourth divided by 2 , shall be equal each to each.

This problem may be easily solved by introducing a new unknown quantity.

Let x, y, z, and u, denote the required parts, and desig. nate by m the several equal quantities which arise from the conditions. We shall then have,

$$
x+2=m, \quad y-2=m, \quad 2 z=m, \quad \frac{u}{2}=m
$$

From which we find,

$$
x=m-2, \quad y=m+2, \quad z=\frac{m}{2}, \quad u=2 m
$$

And, by adding the equations,

$$
x+y+z+u=m+m+\frac{m}{2}+2 m=4 \frac{1}{2} m
$$

And since, by the conditions of the problem, the first member is equal to 90 , we have,

$$
\begin{gathered}
4 \frac{1}{3} m=90, \text { or } \frac{9}{2} m=90 \\
m=20
\end{gathered}
$$

hence,
Having the value of m, we easily find the other values; viz, :

$$
x=18, \quad y=22, \quad z=10, \quad u=40
$$

2. There are three ingots, composed of different metals mixed together. A pound of the first contains 7 ounces of sllver, 3 ounces of copper, and 6 of pewter. A pound of the second contains 12 ounces of silver, 3 ounces of copper, and 1 of pewter. A pound of the third contains 4 ounces of silver, 7 ounces of enpper, and 5 of newter. It is required 7^{*}
to find how much it will take of each of the three ingots to form a fourth, which shall contain in a pound, 8 ounces of silver, $3 \frac{3}{4}$ of copper, and $4 \frac{1}{4}$ of pewter.

Let x, y, and z, denote the number of ounces which it is necessary to take from the three ingots respectively, in order to form a pound of the required ingot. Since there are 7 ounces of silver in a pound, or 16 ounces, of the first ingot, it follows that one ounce of it contains $\frac{7}{16}$ of an ounce of silver, and, consequently, in a number of ounces denoted by x, there is $\frac{7 x}{16}$ ounces of silver. In the same manner, we find that, $\frac{12 y}{16}$, and $\frac{4 z}{16}$, denote the number of ounces of silver taken from the second and third; but, from the enunciation, one pound of the fourth ingot contains 8 ounces of silver. We have, then, for the first equation,

$$
\frac{7 x}{16}+\frac{12 y}{16}+\frac{4 z}{16}=8 ;
$$

or, clearing fractions,

$$
7 x+12 y+4 z=128
$$

As respects the copper, we should find,

$$
3 x+3 y+7 z=60
$$

and with reference to the pewter,

$$
6 x+y+5 z=68
$$

As the coefficients of y in these three equations are the most simple, it is convenient to eliminate this unknown quantity first.

Multiplying the second equation by 4 , and subtracting the first from it, member from member, we have,

$$
5 x+24 z=112
$$

Multiplying the third equation by 3 , and subtracting the second from the resulting equation, we have,

$$
15 x+8 z=144
$$

Multiplying this last equation by 3 , and subtracting the preceding one, we obtain,

$$
\begin{aligned}
40 x & =320 ; \\
x & =8 .
\end{aligned}
$$

Substitute this value for x in the equation,
whence,

$$
\begin{aligned}
15 x+8 z & =144 \\
120+8 z & =144 \\
z & =3
\end{aligned}
$$

it becomes,
whence,
Lastly, the two values, $x=8, z=3$, being substituted in the equation,
give, whence,

$$
\begin{array}{r}
6 x+y+5 z=68 \\
48+y+15=68 \\
y=5
\end{array}
$$

Therefore, in order to form a pound of the fourth ingot, we must take 8 ounces of the first, 5 ounces of the second, and 3 of the third.

VERIFICATION.

If there be 7 ounces of silver in 16 ounces of the first ingot, in eight ounces of it there should be a number of ounces of silver expressed by

$$
\frac{7 \times 8}{16}
$$

In like manner,

$$
\frac{12 \times 5}{16}, \text { and } \frac{4 \times 8}{16},
$$

will express the quantity of silver contained in 5 onnoes of the second ingot, and 3 ounces of the third.

Now, we have,

$$
\frac{7 \times 8}{16}+\frac{12 \times 5}{16}+\frac{4 \times 3}{16}=\frac{128}{16}=8 ;
$$

therefore, a pound of the fourth ingot contains 8 ounces of silver, as required by the enunciation. The same conditions may be verified with respect to the copper and pewter.
3. A 's age is double $B^{\prime} s$, and $B^{\prime} s$ is triple of $C^{\prime} s$, and the sum of all their ages is 140: what is the age of each?

$$
\text { Ans. } A \text { 's }=84 ; B^{\prime} s=42 ; \text { and } C^{\prime} s=14
$$

4. A person bought a chaise, horse, and harness, for $£ 60$; the horse came to twice the price of the harness, and the chaise to twice the cost of the horse and harness: what did he give for each?

$$
\text { Ans. }\left\{\begin{array}{c}
£ 13 \quad 6 s .8 d . \text { for the horse. } \\
£ 613 s .4 d . \text { for the harness. } \\
£ 40
\end{array} \quad\right. \text { for the chaise. }
$$

5. Divide the number 36 into three such parts that $\frac{1}{2}$ of the first, $\frac{1}{3}$ of the second, and $\frac{1}{4}$ of the third, may be all equal to each other. Ans. 8, 12, and 16.
6. If A and B together can do a piece of work in 8 lays, A and C together in 9 days, and B and C in ten days, how many days would it take each to perform the same work alone? Ans. $A, 14 \frac{3}{4} \frac{4}{8} ; B, 17 \frac{23}{2} \frac{1}{1} ; C, 23 \frac{7}{3}$.
7. Three persons, A, B, and C, begin to play together, having among them all $\$ 600$. At the end of the first game A has won one-half of B 's money, which, added to his own, makes double the amount B had at first. In the second game, A loses and B wins just as much as C had at the beginning, when A leaves off with exactly what he had at first: now much had each at the beginning?

$$
\text { Ans. } A, \$ 300 ; B, \$ 200 ; C \$ 100 .
$$

8. Three persons, A, B, and C, together possess $\$ 3640$.

If B gives $A \$ 400$ of his money, then A will have $\$ 320$ more than B; but if B takes $\$ 140$ of C 's money, then B and C will have equal sums: how much has each?

$$
\text { Ans. } A, \$ 800 ; B, \$ 1280 ; C, \$ 1560 .
$$

9. Three persons have a bill to pay, which neither alone is able to discharge. Λ says to B, "Give me the 4 th of your money, and then I can pay the bill." B says to C^{\prime} "Gire me the 8th of yours, and I can pay it." But C says to A, "You must give me the half of yours before I can pay it, as I have but $\$ 8$ ": what was the amount of their bill, and how much money had A and B ?

$$
\text { Ans. }\left\{\begin{array}{l}
\text { Amount of the bill, } \$ 13 . \\
A \text { had } \$ 10, \text { and } B \$ 12 .
\end{array}\right.
$$

10. A person possessed a certain capital, which he placed out at a certain interest. Another person, who possessed 10000 dollars more than the first, and who put out his capital 1 per cent. more advantageously, had an annual income greater by 800 dollars. A third person, who possessed 15000 dollars more than the first, putting out his capital 2 per cent. more advantageously, had an annual income greater by 1500 dollars. Required, the capitals of the three persons, and the rates of interest.

$$
\text { Ans. }\left\{\begin{array}{l}
\text { Sums at interest, } \$ 30000, \\
\text { Rates of interest, }
\end{array} 440000, \$ 45000 .\right.
$$

11. A widow receives an estate of $\$ 15000$ from her deceased husband, with directions to divide it among two sons and three daughters, so that each son may receive twice as much as each daughter, and she herself to receive $\$ 1000$ more than all the children together: what was her share, and what the slare of each child?

$$
\text { Ans. } \begin{cases}\text { The widow's share, } & \$ 8000 \\ \text { Each son's, } & \$ 2000 \\ \text { Each daughter's, } & \$ 1000\end{cases}
$$

12. A certain sum of money is to be divided between three persons, A, B, and C. A is to receive $\$ 3000$ less than half of it, $B \$ 1000$ less than one-third part, and C to receive $\$ 800$ more than the fourth part of the whole: what is the sum to be divided, and what does each receive?

$$
\text { Ans. }\left\{\begin{array}{llr}
\text { Sum, } & \$ 38400 \\
\boldsymbol{A} \text { receives } & \$ 16200 \\
\boldsymbol{B} & \text { " } & \$ 11800 \\
\boldsymbol{C} & \text { " } & \$ 10400
\end{array}\right.
$$

13. A person has three horses, and a saddle which is worth $\$ 220$. If the saddle be put on the back of the first horse, it will make his value equal to that of the second and third; if it be put on the back of the second, it will make his value double that of the first and third; if it be put on the back of the third, it will make his value triple that of the first and second: what is the value of each horse?

$$
\text { Ans. 1st, } \$ 20 ; 2 \mathrm{~d}, \$ 100 ; 3 \mathrm{~d}, \$ 140 .
$$

14. The crew of a ship consisted of her complement of sailors, and a number of soldiers. There were 22 sailors to every three guns, and 10 over; also, the whole number of hands was five times the number of soldiers and guns together. 'But after an engagement, in which the slain were one-fourth of the survivors, there wanted 5 men to make 13 men to every two guns: required, the number of guns, soldiers and sailors.

Ans. 90 guns, 55 soldiers, and 670 sailors.
15. Three persons have $\$ 96$, which they wish to divide equally between them. In order to do this, A, who has the most, gives to B and C as much as they have already; then B divides with A and C in the same manner, that is, by giving to each as much as he had after A had divided with them $\cdot C$ then makes a division with A and B, when it is
found that they all have equal sums: how mach had each at first? Ans. 1st, \$52; 2d, \$28; 3d, \$16.
16. Divide the number a into three such parts, that the first shall be to the second as m to n, and the second to the third as p to q.
$a=\frac{a m p}{m p+n p+n q}, \quad y=\frac{a n p}{m p+n p+n q}, \quad z=\frac{a n q}{m p+n p+n q}$
17. Three masons, A, B, and C, are to build a wall. A and B together can do it in 12 days; B and C in 20 days; and A and C in 15 days: in what time can each do it alone, and in what time can they all do it if they work together? Ans. A, in 20 days; B, in 30 ; and C, in 00 ; all, in 10.

CHAPTER VI.

FORMATION OF POWERA

118. A Power of a quantity is the product obtaned by taking that quantity any number of times as a factor.

If the quantity be taken once as a factor, we have the first power; if taken twice, we have the second power; if three times, the third power; if n times, the $n^{\text {th }}$ power, n being any whole number whatever.

A power is indicated by means of the exponential sign ' thus,

$a=a^{12}$ denotes first power of $a .^{*}$		
$a \times a=a^{2}$	"	square, or 2 d power of a.
$a \times a \times a=a^{3}$	"	cube, or third power of a.
$a \times a \times a \times a=a^{4}$	"	fourth power of a.
$\times a \times a \times a \times a=a^{5}$	"	fifth power of a.
$a \times a \times a \ldots=a^{m}$	"	$m^{\text {th }}$ power of a :

In every power there are three things to be considered:
1st. The quantity which enters as a factor, and which is called the first power.
$2 d$. The small figure which is placed at the right, and a little above the letter, is called the exponent of the
*Since $a^{0}=1$ (Art. 49), $a^{0} \times a=1 \times a=a^{1}$; so that the two factors of a^{1}, are 1 and a.

[^29]power, and shows how many times the letter enters as a factor.

3d. The power itself, which is the final product, or result of the multiplications.

POWERS OF MONOMIALS.

119. Let it be required to raise the monomial $2 a^{3} b^{2}$ to the fourth power. We have,

$$
\left(2 a^{3} b^{2}\right)^{4}=2 a^{3} b^{2} \times 2 a^{3} b^{2} \times 2 a^{3} b^{2} \times 2 a^{3} b^{2}
$$

which merely expresses that the fourth power is equal to the product which arises from taking the quantity four times as a factor. By the rules for multiplication, this product is

$$
\left(2 a^{3} b^{2}\right)^{4}=2^{4} a^{3+3+3+3} b^{2+2+2+2}=2^{4} a^{12} b^{8}
$$

from which we see,
1st. That the coefficient 2 must be raised to the 4 th power ; and,
$2 d$. That the exponent of each letter must be multiplied by 4 , the exponent of the power.

As the same reasoning applies to every example, we have, for the raising of monomials to any power, the following

> RULE.
I. Raise the coefficient to the required power:
II. Multiply the exponent of each letter by the exponent of the power.

$$
E X A M P L E S
$$

1. What is the square of $3 a^{2} y^{3}$? Ans. $9 a^{4} y^{8}$

[^30]2. What is the cube of $6 a^{5} y^{2} x$? Ans, $216 a^{15} y^{8} x^{3}$.
3. What is the fourth power of $2 a^{3} y^{3} b^{5}$? $\quad 16 a^{12} y^{12} b^{20}$.
4. What is the square of $a^{2} b^{5} y^{3}$? Ans. $a^{4} b^{10} y^{6}$.

5 What is the seventh power of $a^{2} b c d^{3}$?
Ans. $a^{14} b^{7} c^{7} d^{21}$
8. What is the sixth power of $a^{2} b^{3} c^{2} d$?

Ans. $a^{12} b^{18} c^{2} d^{6}$.
7. What is the square and cube of $-2 a^{2} b^{2}$?

Square.	Cube.
$-2 a^{2} b^{2}$	$-2 a^{2} b^{2}$
$-2 a^{2} b^{2}$	$-2 a^{2} b^{2}$
$+4 a^{4} b^{4}$.	$+4 a^{4} b^{4}$
	$-2 a^{2} b^{2}$
	$-8 a^{6} b^{6}$.

By observing the way in which the powers are formed, we may conclude,

1st. When the monomial is positive, all the powers will be positive.

2d. When the monomial is negative, all even powers will be positive, and all odd will be negative.
8. What is the square of $-2 a^{4} b^{5} ?$ Ans. $4 a^{8} b^{10}$.
9. What is the cube of $-5 a^{n} b^{2} ? \quad$ Ans. $-125 a^{3 n} b^{6}$.
10. What is the eighth power of $-a^{3} x y^{2}$?

$$
\text { Ans. }+a^{24} x^{8} y^{36}
$$

11. What is the seventh power of $-a^{m} b^{n} c$?

$$
\text { Ans. }-a^{7 m} b^{7 n} c^{7}
$$

12. What is the sixth power of $2 a b^{6} y^{5}$?

Ans. $64 a^{6} b^{36} y^{30}$.
13. What is tne ninth power of $-a^{n} b c^{2}$?

$$
\text { Ans. }-a^{9 n} b^{9} c^{18}
$$

14. What is the sixth power of $-3 a b^{2} d$?

$$
\text { Ans. } 729 a^{6} b^{12} d^{\circ} \text {. }
$$

15. What is the square of $-10 a^{m} b^{n} c^{3}$?

Ans. $100 a^{2 m} b^{2 n} c^{6}$.
16. What is the cube of $-9 a^{m} b^{n} d^{3} f^{2}$?

$$
\text { Ans. }-729 a^{3 m} b^{3 n} d^{9} f^{6} .
$$

17. What is the fourth power of $-4 a^{5} b^{3} c^{4} d^{5}$?

$$
\text { Ans. } 256 a^{20} b^{12} c^{18} d^{20}
$$

18. What is the cube of $-4 a^{2 m} b^{2 n} c^{3} d$?

$$
\text { Ans. }-64 a^{6 m} b^{6 n} c^{9} d^{3}
$$

19. What is the fifth power of $2 a^{3} b^{2} x y$?

Ans. $32 a^{15} b^{10} x^{5} y^{5}$.
20. What is the square of $20 x^{n} y^{m} c^{5}$? Ans. $400 x^{2 n} y^{2 m} c^{1 c}$.
21. What is the fourth power of $3 a^{n} b^{2 n} c^{3}$? Ans. $81 a^{4 n} b^{8 n} c^{12}$.
22. What is the fifth power of $-c^{n} d^{3 m} x^{2} y^{2}$?

$$
\text { Ans. }-c^{5 n} d^{15 m} x^{10} y^{10} \cdot \text {. } n h+n+
$$

23. What is the sixth power of $-a^{n} b^{2 n} c^{m}$?

$$
\text { Ans. } a^{6 n} b^{12 n} c^{6 m} .
$$

24. What is the fourth power of $-2 a^{2} c^{2} d^{3}$.

Ans. $16 a^{8} c^{8} d^{12}$.

POWERS OF FRACTIONS.

120. From the definition of a power, and the rule for the multiplication of fractiors, the cube of the fraction $\frac{a}{b}$, is written,

$$
\left(\frac{a}{b}\right)^{3}=\frac{a}{b} \times \frac{a}{b} \times \frac{a}{b}=\frac{a^{3}}{\bar{b}^{3}} ;
$$

120. What is the rule for raising a fraction to any power?
and since any fraction raised to any power, may be written under the same form, we find any power of a fraction by the following

RULE.

Raise the numerator to the required power for a nero numerator, and the denominator to the required proeer for a ners denominator.

The rule for signs is the same as in the last article.

EXAMPLES

Find the powers of the following fractions:

1. $\left(\frac{\hat{a}-c}{b+c}\right)^{2}$.

Ans. $\frac{a^{2}-2 a c+c^{2}}{b^{2}+2 b c+c^{2}}$.
2. $\left(\frac{x y}{3 b c}\right)^{3}$.

Ans. $\frac{x^{3} y^{3}}{27 b^{3} c^{3}}$.
3. $\left(\frac{-x^{2} y}{2 a b}\right)^{4}$.

Ans. $\frac{x^{8} y^{4}}{16 a^{4} b^{4}}$.
4. $\left(\frac{2 a x^{2} y}{3 b c^{2}}\right)^{2}$.

Ans. $\frac{4 a^{2} x^{4} y^{2}}{9 b^{2} c^{4}}$.
5. $\left(-\frac{d x}{3 y^{2}}\right)^{3}$.

Ans. $-\frac{d^{3} x^{3}}{27 y^{6}}$.
6. $\left(\frac{a x y^{3}}{2 b z^{2}}\right)^{3}$.
7. $\left(-\frac{3 a y^{2}}{2 b^{2} x}\right)^{*}$.

Ans. $\frac{a^{3} x^{3} y^{9}}{8 b^{3} z^{6}}$.
8. Fourth power of $\frac{a b^{2} c}{2 x^{2} y^{2}}$

Ans. $\frac{81 a^{4} y^{16}}{16 b^{8} x^{4}}$. Ans. $\frac{a^{4} b^{8} c^{4}}{16 x^{8} y^{8}}$.
9. Cube of $\frac{x-y}{x+y}$. Ans. $\frac{x^{3}-3 x^{2} y+3 x y^{2}-y^{3}}{x^{3}+3 x^{2} y+3 x y^{2}+y^{3}}$.
10. Fourth power of $\frac{2 a^{m} x^{n}}{24 a^{p} y^{q}}$. Ans. $\frac{a^{4 m} x^{4 n}}{16 a^{4 p} y^{4 q}}$.
11. Fifth power of $-\frac{2 b c^{n} x^{m}}{{ }_{2}} 18 y^{p} z^{q} . \quad$ Ans. $-\frac{b^{3} c^{5 x} x^{5 m}}{32 y^{5} F z^{5 q}}$.

POWERS OF BINOMIALS.

121. A Binomial, like a monomial, may be rassed to any power by the process of continued multiplication.
122. Find the fifth power of the binomial $a+b$.

$$
\begin{aligned}
& a+b \text {. lst power. } \\
& a+b \\
& \overline{a^{2}+a b} \\
& \frac{+a b+b^{2}}{a^{2}+2 a b+b^{2}} \\
& \text { 2d power. } \\
& \frac{a+b}{a^{3}+2 a^{2} b+a b^{2}} \\
& \begin{array}{l}
\frac{+a^{2} b+2 a b^{2}+b^{3}}{a^{3}+3 a^{2} b+3 a b^{2}+b^{3}} \\
\frac{a+b}{a^{4}+3 a^{3} b+3 a^{2} b^{2}+a b^{3}}
\end{array} \\
& \frac{+a^{3} b+3 a^{2} b^{2}+3 a b^{3}+b^{4}}{a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}} \\
& \text { 4th power. } \\
& a+b: \\
& a^{5}+4 a^{4} b+6 a^{3} b^{2}+4 a^{2} b^{3}+a b^{4} \\
& +a^{4} b+4 a^{3} b^{2}+6 a^{2} b^{3}+4 a b^{4}+b^{5} \\
& a^{5}+5 a^{13}+10 u^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5} \quad \text { Ans. }
\end{aligned}
$$

12:. How may a binomial be raised to any power?
122. How does the namber of multiplications compare with the ex ponent of the power? If the exponent is 4 , what is the number of multiplications? How many when it is m ? How many things are considered in the raising of powers? Name them.

Note.-122. It will be observed that the number of multiplications is always 1 less than the units in the expo nent of the power. 'Thus, if the exponent is 1 , no multipljcation is necessary. If it is 2 , we multiply once; if it is 3 , twice; if 4 , three times, \&c. The powers of polynomials may be expressed by means of an exponent. Thus, to express that $a+b$ is to be raised to the 5 th power, we write

$$
(a+b)^{5}
$$

if to the m th power, we write

$$
(a+b)^{m}
$$

2. Find the 5 th power of the binomial $\alpha-b$.

$$
\begin{aligned}
& a-b \\
& \frac{a-b}{a^{2}-a b} \\
& \frac{-a b+b^{2}}{a^{2}-2 a b+b^{2}} \\
& \frac{a-b}{a^{3}-2 a^{2} b+a b^{2}} \\
& \frac{-a^{2} b+2 a b^{2}-b^{3}}{a^{3}-3 a^{2} b+3 a b^{2}-b^{3}} \\
& \frac{a-b}{a^{4}-3 a^{3} b+3 a^{2} b^{2}-a b^{3}} \\
& \frac{-a^{3} b+3 a^{2} b^{2}-3 a b^{3}+b^{4}}{a^{4}-4 a^{3} b+6 a^{2} b^{2}-4 a b^{3}+b^{4}} \cdot 4 \text {. } . \\
& \frac{a-b}{a^{5}-4 a^{4} b+6 a^{3} b^{2}-4 a^{2} b^{3}+a b^{4}} \\
& \frac{-a^{4} b+4 a^{3} b^{2}-6 a^{2} b^{3}+4 a b^{4}-b^{5}}{a^{6}-5 a^{4} b+10 a^{3} b^{2}-10 a^{2} b^{3}+5 a b^{4}-b^{5}} \text { power. }
\end{aligned}
$$

In the same way the higher powers may be obtained. By examining the powers of these binomials, it is plain that four things must be considered:

1st. The number of terms of the power.
2 d . The signs of the terms.
3 d . The exponents of the letters.
4th. The coefficients of the terms.
Let us see according to what laws these are formed.

Of the Terms.

123. By examining the several multiplications, we shall observe that the first power of a binomial contains two terms; the second power, three terms; the third power, four terms; the fourth power, five; the fifth power, six, \&c.; and hence we may conclude:

That the number of terms in any power of a binomial, is greater by one than the exponent of the power.

Of the Signs of the Terms.

124. It is evident that when both terms of the given binomial are plus, all the terms of the pover will be plus.
If the second term of the binomial is negative, then all the odd terms, counted from the left, will be positive, and all the even terms negative.
[^31]
Of the Exponents.

125. The letter which occupies the first place in a binomial, is called the leading letter. Thus, a is the leading letter in the binomials $a+b$, and $a-b$.

1st. It is evident that the exponent of the leading letter in the first term, will be the same as the exponent of the power; and that this exponent will diminish by one in each term to the right, until we reach the last term, when it will be 0 (Art. 49).

2d. The exponent of the second letter is 0 in the first term, and increases by one in each term to the right, to the last term, when the exponent is the same as that of the given power.

3d. The sum of the exponents of the two letters, in any term, is equal to the exponent of the given power. This last remark will enable us to verify any result obtained by means of the binomial formula.

Let us now apply these principles in the two following examples, in which the coefficients are omitted:
$(a+b)^{6} \ldots a^{6}+a^{5} b+a^{4} b^{2}+a^{3} b^{3}+a^{2} b^{4}+a b^{5}+b^{6}$, $(a-b)^{6} \cdot . \cdot a^{6}-a^{5} b+a^{4} b^{2}-a^{3} b^{3}+a^{2} b^{4}-a b^{5}+b^{6}$.

As the pupil should be practised in writing the terms with their proper signs, without the coefficients, we will add a few more examples.

[^32]1. $(a+b)^{5} \cdot a^{4}+a^{2} b+a b^{2}+b^{3}$.
2. $(a-b)^{4} \cdots a^{4}-a^{3} b+a^{2} b^{2}-a b^{3}+b^{4}$.
3. $(a+b)^{5} . \cdot a^{5}+a^{4} b+a^{3} b^{2}+a^{2} b^{3}+a b^{4}+b^{5}$.
4. $(1,-b)^{7} \cdot a^{7}-a^{6} b+a^{5} b^{2}-a^{4} b^{3}+a^{3} b^{4}-a^{2} b^{5}+a b^{6}-b^{7}$.

Of the Coefficients.

126. The coefficient of the first term is 1 . The coeffi cient of the second term is the same as the exponent of the given power. The coeflicient of the third term is found by multiplying the coefficient of the second term by the exponent of the leading letter in that term, and dividing the product by 2. And finally:

If the coefficient of any term be multiplied by the exponent of the leading letter in that term, and the product divided by the number which marks the place of the term from the left, the quotient will be the coefficient of the next term.

Thus, to find the coefficients in the example,
$(a-b)^{7} \ldots a^{7}-a^{6} b+a^{5} b^{2}-a^{4} b^{3}+a^{3} b^{4}-a^{2} b^{5}+a b^{6}-b^{7}$,
we first place the exponent 7 as a coefficient of the second term. Then, to find the coefficient of the third term, we multiply 7 by 6 , the exponent of a, and divide by 2 . The quotient, 21 , is the coefficient of the third term. To find the coefficient of the fourth, we multiply 21 by 5 , and divide the product by 3 ; this gives 35 . To find the coefficient of the fifth term, we multiply 35 by 4 , and divide the product by 4 ; this gives 35 . The coefficient of the sixth term, found

[^33]in the same way, is 21 ; that of the seventh, 7 ; and that of the eighth, 1 . Collecting these coefficients,
$(a-b)^{7}=$
$a^{7}-7 a^{6} b+21 a^{5} b^{2}-35 a^{4} b^{3}+35 a^{3} b^{4}-21 a^{2} b^{5}+7 a b^{6}-b^{7}$.
Note.-We see, in examining this last result, that the coefficients of the extreme terms are each 1, and that the coefficients of terms equally distant from the extreme terms are equal. It will, therefore, be sufficient to find the coefficients of the first half of the terms, and from these the others may be immediately written.

EXAMPLES

1. Find the fourth power of $a+b$.

$$
\text { Ans. } a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}
$$

2. Find the fourth power of $a-b$.

$$
\text { Ans. } a^{4}-4 a^{3} b+6 a^{2} b^{2}-4 a b^{3}+b^{4}
$$

3. Find the fifth power of $a+b$.

$$
\text { Ans. } a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5}
$$

4. Find the fifth power of $a-b$.

$$
\text { Ans. } a^{5}-5 a^{4} b+10 a^{3} b^{2}-10 a^{2} b^{3}+5 a b^{4}-b^{5}
$$

5. Find the sixth power of $a+b$.

$$
a^{6}+6 a^{5} b+15 a^{4} b^{2}+{ }^{*} 20 a^{3} b^{3}+15 a^{2} b^{4}+6 a b^{5}+b^{6}
$$

3. Find the sixth power of $a-b$.

$$
a^{6}-6 a^{5} b+15 a^{4} b^{2}-20 a^{3} b^{3}+15 a^{2} b^{4}-6 a b^{5}+b^{6}
$$

12\%. When the terms of the binomial have coefficients, we may still write out any power of it by means of the Binomial Formula.
7. Let it be required to find the cube of $2 c+3 d$.

$$
(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}
$$

Here, $2 c$ takes the place of a in the formula, and $3 d$ the place of b. Hence, we have,

$$
\begin{equation*}
(2 c+3 d)^{3}=(2 c)^{3}+3 \cdot(2 c)^{2} \cdot 3 d+3(2 c)(3 d)^{2}+(3 d)^{3} . \tag{1.}
\end{equation*}
$$

and ly performing the indicated operations, we have,

$$
(2 c+3 d)^{3}=8 c^{3}+36 c^{2} d+54 c d^{2}+27 d^{3}
$$

If we examine the second member of Equation (1), we see that each term is made up of three factors: 1st, the numerical factor; 2 d , some power of $2 c$; and 3 d , some power of $3 d$. The powers of $2 c$ are arranged in descending order towards the right, the last term involving the 0 power of $2 c$ or 1 ; the powers of $3 d$ are arranged in ascending order from the first term, where the 0 power enters, to the last term.
The operation of raising a binomial involving coefficients, is most readily effected by writing the three factors of each term in a vertical column, and then performing the multiplications as indicated below.
Find, by this method, the cube of $2 c+3 d$.

operation.

| $1+3+3+1$ | Coefficients. |
| :---: | :--- | :--- |
| $8 c^{3}+4 c^{2}+2 c+1$ | Powers of $2 c$ |
| $1+3 d+9 d^{2}+27 d^{3}$ | Powers of $3 d$ |
| $(2 c+d)^{3}=8 c^{3}+36 c^{2} d+54 c d^{2}+27 d^{3}$ | |

The preceding operation hardly requires explanation. In the first line, write the numerical coefficients corresponding to the particular power; in the second line, write the descending powers of the leading term to the 0 power; in the third line, write the ascending powers of the following term from the 0 power upwards. It will be easiest to commence
the second line on the right hand. The multiplication should be performed from above, downwards.
8. Find the 4 th power of $3 a^{2} \dot{c}-2 b d$.
$(a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$
$1+4+6+4+1$
$81 a^{3} c^{4}+27 a^{6} c^{2}+9 a^{4} c^{2}+3 a^{2} c+1$
$1-2 b d+4 b^{2} d^{2}-8 b^{3} d^{3}+16 b^{4} d$.
$81 a^{8} c^{4}-216 a^{6} c^{2} b d+216 a^{4} c^{2} b^{2} d^{2}-96 a^{2} c b^{3} d^{3}+16 b^{4} d^{4}$.
9. What is the cube of $3 x-6 y$?

$$
\text { Ans. } 27 x^{3}-162 x^{2} y+324 x y^{2}-216 y^{3}
$$

10. What is the fourth power of $a-3 b$?

$$
\text { Ans. } a^{4}-12 a^{3} b+54 a^{2} b^{2}-108 a b^{3}+81 b^{4}
$$

11. What is the fifth power of $c-2 d$?

Ans. $c^{5}-10 c^{4} d+40 c^{3} d^{2}-80 c^{2} d^{3}+80 c d^{4}-32 d^{5}$.
12. What is the cube of $5 a-3 d$?

Ans. $125 a^{3}-225 a^{9} d+135 a d^{2}-27 d^{3}$.

[^34]
CHAPTER VII.

SQUARE ROOT. RADICALS OFTHE SECOND DEGREE.
128. The Square Root of a number is one of its two equal factors. Thus, $6 \times 6=36$; therefore, 6 is the square root of 36 .
The symbol for the square root, is $\sqrt{ }$, or the fractional exponent $\frac{1}{2}$; thus,

$$
\sqrt{a} \text {, or } a^{\frac{1}{2}},
$$

indicates the square root of a, or that one of the two equal factors of a is to be found. The operation of finding sucb factor is called, Extracting the Square Root.
129. Any number which can be resolved into two equa! integral factors, is called a perfect square.

The following Table, verified by actual multiplication, indieates all the perfect squares between 1 and 100 .

TAELE.

$$
1,4, \quad 9, \quad 16, \quad 25,36,49, \quad 64,81,100, \text { squares. }
$$

$$
1, \quad 2, \quad 3, \quad 4, \quad 5, \quad 6, \quad 7, \quad 8, \quad 9, \quad 10, \quad \text { roots. }
$$

128. What is the equare root Cf a number? Wha is the operation of finding the equal factor called ?
129. What is a perfect square? How many perfect squares are there between 1 and luo, inel ding hotk numbers? What are they?

We may employ this table for finding the square root of any perfect square between 1 and 100.

Look for the number in the first line; if it is found there, its square root will be found immediately under it.

If the given number is less than 100 , and not a perfect square, it will fall between two numbers of the upper line, and its square root will be found between the two numbers directly bolow; the lesser of the two will be the entire part of the root, and will be the true root to within less than 1.

Thus, if the given number is 55 , it is found between the perfect squares 49 and 64 , and its root is 7 and a decimal fraction.

Note.-There are ten perfect squares between 1 and 100, if we include both numbers; and eight, if we exclude both.

If a number is greater than 100 , its square root will be greater than 10 , that is, it will contain tens and units. Let .N denote such a number, x the tens of its square root, and y the units; then will,

$$
N=(x+y)^{2}=x^{2}+2 x y+y^{2}=x^{2}+(2 x+y) y
$$

That is, the number is equal to the square of the tens in its roots, plus twice the product of the tens by the units, plus the square of the units.

EXAMPLE.

1. Extract the square root of 6084 .

Since this number is composed of more than two places of figures, its root will contain more than one. But since it is less than 10000 , which is the square of 100 , the root will contain but two figures ' that is, unite and tens.

Now, the square of the tens must be found in the two left-hand figures, which we will separate from the other two by putting a point over the place of units, and a second over the place of hundreds. These parts, of two figures each, are called periods. The part 60 is comprised between the two squares 49 and 64 , of which the roots are 7 and 8 ; hence, 7 expresses the number of tens sought; and the required root is composed of 7 tens and a certain number of units.

The figure 7 being found, we write it on the right of the given number, from which we separate it by a vertical line: then we subtract its square, 49 , from 60 , which leaves a remainder of 11 ,
 to which we bring down the two next figures, 84. The result of this operation, 1184, contains twice the product of the tens by the units, plus the square of the units.
But since tens multiplied by units cannot give a product of a less unit than tens, it follows that the last figure, 4 , can form no part of the double product of the tens by the units, this double product is therefore found in the part 118, which we separate from the units' place, 4.

- Now if we double the tens, which gives 14 , and then divide 118 by 14, the quotient 8 will express the units, or a number greater than the units. This quotient can never be too small, since the part 118 will be at least equal to twice the product of the tens by the units; but it may be too large, for the 118 , besides the double product of the tens by the units, may likewise contain tens arising from the square of the units. To ascertain if the quotient 8 expresses the right number of units, we write the 8 on the right of the 14, which gives 148, and then we multiply 148 by 8 . This multiplication being effected, gives for a product, 1184. a
number equal to the result of the first operation. Hav. ing subtracted the product, we find the remainder equal to 0 ; hence, 78 is the root required. In this operation, we form, lst, the square of the tens; 2nd, the doulle product of the tens by the units; and 3 d , the square of the units.

Indeed, in the operations, we have merely subtracted from? the given number 6084: 1st, the square of 7 tens, or of 70 ; $2 d$, twice the product of 70 by 8 ; and, 3 d, the square of 8 ; that is, the three parts which enter into the composition of the square, $70+8$, or 78 and since the result of the subtraction is 0 , it follows tha', 78 is the square root of 6084.
130. The operations in the last example have been performed on but two periods, but it is plain that the same methods of reasoning are equally applicable to larger numbers, for by changing the order of the units, we do not change the relation in which they stand to each other.

Thus, in the number 608495 , the two periods 6084 , have the same relation to each other as in the number $60 \mathrm{S4}$; and hence the methods used in the last example are equally applicable to larger numbers.
131. Hence, for the extraction of the square root of numbers, we have the following

RULE.

I. Point off the given number into periods of two figures each, beginning at the right hand:
II. Note the greatest perfect square in the first period on the left, and place its root on the right, after the manner of

[^35]a quotient in division; then subtract the square of this root from the first period, and bring down the second period for a remaincler:
III. Doulle the root already found, and place the result on the left for a divisor. Seek how many times the divisor is contained in the remainder, exclusive of the right-hand figure, and place the figure in the root and also at the right of the divison:
IV. Multipl, the divisor, thus augmented, by the las: figure of the root, and subtract the product from the res. mainder, and bring down the next period for a now remainder. But if any of the products should be greater than the remainder, diminish the last figure of the root by one:
V. Double the whole root already found, for a new divisor, and continue the operation as before, until all the periods are brought down.
132. Note.-1. If, after all the periods are brought down, there is no remainder, the given number is a perfect square.
2. The number of places of figures in the root will always be equal to the number of periods into which the given number is divided.
3. If the given number has not an exact root, there will be a remainder after all the periods are brought down, in which case ciphers may be annexed, forming new periods, for each of which there will be one decimal place in the root.

[^36]
EXAMPLES.

1. What is the square root of 36729 ?

In this example there are two periods of decimals, end, hence, two places of decimals in the root.

$\begin{array}{lll} \dot{3} & 6 \dot{7} & 2 \dot{9} \\ 1 \end{array} \quad 191.64+$	
$29 \begin{aligned} & 267 \\ & 261 \end{aligned}$	
381	$\begin{array}{\|l\|} \hline 629 \\ 381 \end{array}$
3826	$\begin{array}{\|l\|l} 24800 \\ 22956 \end{array}$
38324	$\begin{aligned} & 184400 \\ & 153296 \end{aligned}$
	31104 Rem.

2. To find the square root of 7225 .
3. To find the square root of 17689.
4. To find the square root of 994009 .
5. To find the square root of 85673536 .
6. To find the square root of 67798756 .
7. To find the square root of 978121 .
8. To find the square root of 956484.
9. What is the square root of 36372961 ?
10. What is the square root of 22071204 ?
11. What is the square root of 106929 ?
12. What of 12088868379025 ?
13. What of 2268741 ?
14. What of 7596796 ?
15. What is the square root of 96 ?
16. What is the square root of 153 ?
17. What is the square root of 101 .

Ans. 85.
Ans. 133.
Ans. 997. Ans. 9256.
Ans. 8234.
Ans. 989.
Ans. 978.
Ans. 6031.
Ans. 4698.
Ans. 327.

Ans. $1506.23+$
Ans. $2756.22+$ Ans. $9.79795+$
Ans. $12.36931+$. Ans. 10.04987 t.
18. What of 285970396044 ?
19. What of 41605800625 ?
20. What of 48303584206084 ?

Ans. 534762.
Ans. 203975.
Ans. 6950078.

EXTRACTION OF THE SQUARE ROOT OF FRACTIONS.
133. Since the square or second power of a fraction is obtained by squaring the numerator and denominator separately, it follows ihat

The square root of a fraction will be equal to the square root of the numerator divided by the square root of the denominator.

For example, the square root of $\frac{a^{2}}{b^{2}}$ is equal to $\frac{a}{b}$: for,

$$
\frac{a}{b} \times \frac{a}{b}=\frac{a^{2}}{b^{2}} .
$$

1. What is the square root of $\frac{1}{4}$?

Ans. $\frac{1}{2}$.
2. What is the square root of $\frac{9}{16}$? Ans. $\frac{3}{4}$.
3. What is the square root of $\frac{64}{81}$? Ans. $\frac{8}{9}$.
4. What is the square root of $\frac{256}{361}$? Ans. $\frac{16}{19}$.
5. What is the square root of $\frac{16}{64}$? Ans. $\frac{1}{2}$.
6. What is the square root of $\frac{4096}{61009}$? Ans. $\frac{64}{247}$.
7. What is the square root of $\frac{582169}{956484}$? Ans. $\frac{763}{978}$.
188. To what is the square root of a fraction equal ?
134. If the numerator and denominator are not perfect squares, the root of the fraction cannot be exactly found. We can, however, easily find the approximate root.
rule.
Multiply both terms of the fraction by the denominator: Then extract the square root of the numerator, and divido this root by the root of the denominator; the quotient win be the approximate root.

1. Find the square root of $\frac{3}{5}$.

Multiplying the numerator and denominator by 5

$$
\sqrt{\frac{3}{5}}=\sqrt{\frac{15}{25}}=\frac{\sqrt{15}}{5}=(3.8729+) \div 5 ;
$$

hence, $(3.8729+) \div 5=.7745+=$ Ans.
2. What is the square root of $\frac{7}{4}$? Ans. $1.32287+$.
3. What is the square root of $\frac{14}{9} ? \quad$ Ans. $1.24721+$.
4. What is the square root of $11 \frac{11}{16} ?$ Ans. $3.41869+$.
5. What is the square root of $7 \frac{13}{36}$? Ans. $2.71313+$.
6. What is the square root of $8 \frac{15}{49}$? Ans. $2.88203+$. X
7. What is the square roct of $\frac{5}{12} ? \quad$ Ans. $0.64549+$. X
8. What is the square root of $10 \frac{3}{10}$? Ans. $3.20936+$.

[^37]135. Finally, instead of the last method, we may, if we please,

Change the common fraction into a decima', and continue the division until the number of decimal places is double the number of places required in the root. Then extract the root of the decimal by the last rule.

RXAMPLES.

1. Extract the square of $\frac{11}{14}$ to within .001. This num ber, reduced to decimals, is 0.785714 to within 0.000001 ; but the root of 0.785714 to the nearest unit, is .886 ; hence, 0.886 is the root of $\frac{11}{14}$ to within .001 .
2. Find the $\sqrt{2 \frac{13}{15}}$ to within 0.0001 . Ans. $1.6931+$.
3. What is the square root of $\frac{1}{17}$? Ans. $0.24253+$.
4. What is the square root of $\frac{7}{8} ? \quad$ Ans. $0.93541+$.
5. What is the square root of $\frac{5}{3}$? Ans. $1.29099+$.
extraction of tie square root of monomils.
6. In order to discover the process for extracting the square root of a monomial, we must see how its squate is formed.

By the rule for the multiplication of monomials (Art. 42). we have,

$$
\left(5 a^{2} b^{3} c\right)^{2}=5 a^{2} b^{3} c \times 5 a^{2} b^{3} c=25 a^{4} b^{6} c^{2}
$$

185. What is a second method of finding the approximate root?
186. Give the rule for extracting the square root of monomials?
that is, in order to square a monomial, it is necessary to square its coefficient and double the exponent of each of the letters. Hence, to find the square root of a monomial, we have the following

RULE.

I Fixtract the square root of the coefficient for a newn coefficient:
II. Divide the exponent of each letter by 2, and then annex all the letters with their new exponents.

Since like signs in two factors give a plus sign in the product, the square of $-a$, as well as that of $+a$, will be $+a^{2}$; hence, the square root of a^{2} is either $+a$, or $-a$. Also, the square root of $25 a^{2} b^{4}$, is either $+5 a b^{2}$, or $-5 a b^{2}$. Whence we conclude, that if a monomial is positive, its square root may be affected either with the sign + or - ; thus, $\sqrt{9 a^{4}}= \pm 3 a^{2}$; for, $+3 a^{2}$ or $-3 a^{2}$, squared, gives $+8 a^{4}$. The double sign \pm, with which the root is affected, is read plus and minus.

EXAMPLES.

1. What is the square root of $64 a^{6} b^{4}$?

$$
\sqrt{64 a^{6} b^{4}}=+8 a^{3} b^{2} ; \text { for }+8 a^{3} b^{2} \times+8 a^{3} b^{2}=+64 a^{6} b^{4}
$$

and, $\sqrt{64 a^{6} b^{4}}=-8 a^{3} b^{2}$; for $-8 a^{3} b^{2} \times-8 a^{3} b^{2}=+64 a^{5} b^{4}$
Hence,

$$
\sqrt{64 a^{6} b^{4}}= \pm 8 a^{3} b^{4}
$$

2. Find the square root of $625 a^{2} b^{8} c^{6}$. $\quad \pm 25 a b^{4} c^{3}$.
3. Find the square root of $576 a^{4} b^{6} c^{8}$. $\pm 24 a^{2} b^{3} c^{4}$.
4. Find the square root of $196 x^{6} y^{2} z^{4}$. $\pm 14 x^{3} y z^{2}$.
5. Find the square root of $441 a^{8} b^{6} c^{10} d^{16} . \pm 21 a^{4} b^{3} c^{5} d^{3}$.
6. Find the square root of $784 a^{12} b^{14} c^{16} d^{2}$. $\pm 28 a^{6} b^{7} c^{8} d$.
7. Find the square root of $81 a^{8} b^{4} c^{6}$. $\pm 9 a^{4} b^{2} c^{3}$.

Notes.-137. 1. From the preceding ruie it follows, that when a monomial is a perfect square, its numerical coefficient is a perfect square, and all its exponents even numbers. Thus, $25 a^{4} b^{2}$ is a perfect square.
2. If the proposed monomial were negative, it would he impossible to extract its square root, since it has just been shown (Art. 126) that the square of every quantity, whether positive or negative, is essentially positive. Therefore,

$$
\sqrt{-9}, \quad \sqrt{-4 a^{2}}, \quad \sqrt{-8 t^{2} b},
$$

are algebraic symbols which indicate operations that cannot be performed. They are called imaginury, quantities, or rather, imaginary expressions, and are frequently met with in the resolution of equations of the second degree.

IMPERFECT SQUARES.

138. When the coefficient is net a perfect square, or when the exponent of any letter is uneven, the monomial is an imperfect square: thus, $98 a b^{4}$ is an imperfect square. Its root is then indicated by means of the adical sign ; thus,

$$
\sqrt{98 a b^{4}}
$$

Such quantities are called, radical quantities, or radicals of the second degree: hence,

A radical quantity, is the indicated root of an imperfect power.

[^38]
TRANSFORMATION OF RADICALS.

139. Let a and b denote any two numbers, and p the product of their square roots: then,

$$
\sqrt{a} \times \sqrt{\bar{b}}=p . \quad . \quad . \quad \text {. } 1 .)
$$

siquaring both members, we have,

$$
a \times b=p^{2} \quad \text {. . . . (2.) }
$$

Then, extracting the square root of both members of (2),

$$
\sqrt{a b}=p \cdot . \cdot \cdot \cdot(3 .)
$$

And since the second members are the same in Equations (1) and (3), the first members are equal: that is,

The square root of the product of two quantities is equal to the product of their square roots.
140. Let a and b denote any two numbers, and q the quotient of their square roots; then,

$$
\begin{equation*}
\frac{\sqrt{a}}{\sqrt{b}}=q \tag{1.}
\end{equation*}
$$

Squaring both members, we have,

$$
\frac{a}{b}=q^{2} \cdot(2 .)
$$

then extracting the square root of both members of (2),

$$
\sqrt{\frac{a}{b}}=q \quad \cdot \cdot \cdot \cdot \cdot(3)
$$

and since the second members are the same in Equations (1) and (3), the first members are equal ; that is,

[^39]The square root of the quotient of two quantities is equal to the quotient of their square roots.

These principles enable us to transform radical expressions, or to reduce them to simpler forms; thus, the expression,
hence,

$$
\begin{aligned}
98 a b^{4} & =49 b^{4} \times 2 a ; \\
\sqrt{98 a b^{4}} & =\sqrt{49 b^{4} \times 2 a} ;
\end{aligned}
$$

and by the principle of (Art. 139),

$$
\sqrt{49 b^{4} \times 2 a}=\sqrt{49 b^{4}} \times \sqrt{2 a}=7 b^{2} \sqrt{2 a} .
$$

In like manner,

$$
\begin{aligned}
& \sqrt{45 a^{2} b^{3} c^{2} d}=\sqrt{9 a^{2} b^{2} c^{2} \times 5 b d}=3 a b c \sqrt{5 b d .} \\
& \sqrt{864 a^{2} b^{5} c^{11}}=\sqrt{144 a^{2} b^{4} c^{10} \times 6 b c}=12 a b^{2} c^{5} \sqrt{6 b c} .
\end{aligned}
$$

The coefficient of a radical is the quantity without the sign ; thus, in the expressions,

$$
7 b^{2} \sqrt{2 a}, \quad 3 a b c \sqrt{5 b d}, \quad 12 a b^{2} c^{5} \sqrt{6 b c},
$$

the quantities $7 l^{2}, 3 a b c, 12 a b^{2} c^{5}$, are coefficients of the radicals.
141. Hence, to simplify a radical of the second degree, we have the following

RULE.

I. Divide the expression under the radical sign into two factors, one of which shall be a perfect square:
II. Extract the square root of the perfect square, and then multiply this root by the indicated squane root of the remaining factor.

[^40]Note. -To determine if a given number has any factor which is a perfect square, we examine and see if it is divisidle by either of the perfect squares,

$$
4, \quad 9, \quad 16, \quad 25, \quad 36,49, \quad 64, \quad 81, \& c . ;
$$

of it is not, we conclude that it does not contain a factor which is a perfect square.

EXAMPLES.

Reduce the following radicals to their simplest form:

> 1. $\sqrt{75 a^{3} b c}$.
> 2. $\sqrt{128 b^{5} a^{6} d^{2}}$.
> 3. $\sqrt{32 a^{5} b^{8} c}$.
> 4. $\sqrt{256 a^{2} b^{4} c^{8}}$.
> 5. $\sqrt{1024 a^{9} b^{7} c^{5}}$.
> 6. $\sqrt{729 a^{7} b^{5} c^{6} d}$.
> 7. $\sqrt{675 a^{7} b^{5} c^{2} d}$.
> 8. $\sqrt{1445 a^{3} c^{8} d^{4}}$.
> 9. $\sqrt{1008 a^{9} d^{7} m^{8}}$.
> 10. $\sqrt{2156 a^{10} b^{8} c^{6}}$.
> 11. $\sqrt{405 a^{7} b^{6} d^{8}}$.

Ans. $5 a \sqrt{3 a b c}$.
Ans. $8 b^{2} a^{3} d \sqrt{2 b}$.
Ans. $4 a^{4} b^{4} \sqrt{2 a c}$.
$A n s . \ddagger-16 a b^{2} c^{4}$.
Ans. $32 a^{4} b^{3} c^{2} \sqrt{a b c}$.
Ans. $27 a^{3} b^{2} c^{3} \sqrt{a b c l}$.
Ans. $15^{3} a^{3} b^{2} c \sqrt{3 u b d}$.
Ans. $17 a c^{4} d^{2} \sqrt{5 a}$.
Ans. $12 a^{4} d^{3} m^{4} \sqrt{7 a d}$.
Ans. $14 a^{5} b^{4} c^{3} \sqrt{11 .}$
Ans. $9 a^{3} b^{2} d^{4} \sqrt{5 a}$.
142. Notes.-1. A coefficient, or a factor of a coeffic client, may be carried under the radical sign, by squaring it. Thus,

1. $3 a^{2} \sqrt{b c}=\sqrt{\left(3 a^{2}\right)^{2} \times b c}=\sqrt{9 a^{4} b c}$.
2. $2 a b \sqrt{d}=2 \sqrt{a^{2} b^{2} d}=\sqrt{4 a^{2} b^{2} d}$.
3. How may a coefficient or factor be carried under the radical sign To what is the square root of a negative quantity equal?
4. $4(a+b) \sqrt{a-b}=4 \sqrt{(a+b)^{2}(a-b)}=4 \sqrt{\left(a^{2}-b^{2}\right)(a+b)}$
5. $5 b c \sqrt{u^{2}-c^{2}}=5, \sqrt{b^{2} c^{2}\left(a^{2}-c^{2}\right)}$.
6. The square root of a negative quantity may also be simplified; thus,

$$
\sqrt{-9}=\sqrt{9 \times-1}=\sqrt{9} \times \sqrt{-1}=3 \sqrt{-1}
$$

and, $\quad \sqrt{-4 a^{2}}=\sqrt{4 a^{2}} \times \sqrt{-1}=2 a \sqrt{-1} ; \quad$ also
$\sqrt{-8 a^{2} b}=\sqrt{4 a^{2} \times-2 b}=2 a \sqrt{-2 b}=2 a \sqrt{2 b} \times \sqrt{-1} ;$
that is, the square root of a negative quantity is equal to the square root of the same quantity with a positive sign, multiplied into the square root of -1 .

Reduce the following:

1. $\sqrt{-64 a^{2} b^{2}}$.
2. $\sqrt{-128 a^{4} b^{5}}$.
3. $\sqrt{-72 a^{5} b^{7} c^{6}}$.
4. $\sqrt{-48 a^{3} b c^{5}}$.

Ans. $8 a b \sqrt{-1}$.
Ans. $8 a^{2} b^{2} \sqrt{2 b} \sqrt{-1}$. Ans. $6 a^{2} b^{3} c^{3} \sqrt{2 a b} \sqrt{-1}$.

Ans. $4 a c^{2} \sqrt{3 a b c} \sqrt{-1}$.

ADDITION OF RADICALS.

143. Smular Radicals, of the second degree, are those in which the quantities under the sign are the same. Thus, the radicals $3 \sqrt{6}$, and $5 c \sqrt{6}$ are similar, and so also are $9 \sqrt{2}$, and $7 \sqrt{2}$.
144. Radicals are added like other algebraic quadtities hence, the following

143. What are similar radicals of the second degree?

144. Give the rule for the addition of radicals of the second degree?

RULE.

I. If the radicals are similar, add their coefficients, and to the sum annex the common radical:
II. If the radicals are not similar, connect them together with their proper signs.

Thus, $\quad 3 a \sqrt{b}+5 c \sqrt{b}=(3 a+5 c) \sqrt{b}$.
In like manner,

$$
7 \sqrt{2 a}+3 \sqrt{2 a}=(7+3) \sqrt{2 a}=10 \sqrt{2 a}
$$

Notes.-1. Two radicals, which do not appear to be similar at first sight, may become so by transformation (Art. 141.)

For example,

$$
\begin{gathered}
\sqrt{48 a b^{2}}+b \sqrt{75 a}=4 b \sqrt{3 a}+5 b \sqrt{3 a}=9 b \sqrt{3 a} \\
2 \sqrt{45}+3 \sqrt{5}=6 \sqrt{5}+3 \sqrt{5}=9 \sqrt{5}
\end{gathered}
$$

2. When the radicals are not similar, the addition or subtraction can only be indicated. Thus, in order to add $3 \sqrt{6}$ to $5 \sqrt{a}$, we write,

$$
5 \sqrt{a}+3 \sqrt{b}
$$

Add together the following:

1. $\sqrt{27 a^{2}}$ and $\sqrt{48 a^{2}}$.

Ans. $7 a \sqrt{3}$.
2. $\sqrt{50 a^{4} b^{2}}$ and $\sqrt{72 a^{4} b^{2}}$. Ans. $11 a^{2} b \sqrt{2}$.
3. $\sqrt{\frac{3 \ell^{2}}{5}}$ and $\sqrt{\frac{a^{2}}{15}}$. Ans. $4 \alpha \sqrt{\frac{1}{15}}$.
4. $\sqrt{125}$ and $\sqrt{500 \alpha^{2}}$.

Ans. $(5 .+10 a) \sqrt{5}$.
5. $\sqrt{\frac{50}{147}}$ and $\sqrt{\frac{100}{294}}$

Ans. $\frac{10}{21} \sqrt{6}$
6. $\sqrt{98 a^{2} x}$ and $\sqrt{36 x^{2}-36 a^{2}}$.

$$
\text { Ans. } 7 a \sqrt{2 x}+6 \sqrt{x^{2}-a^{2}}
$$

7. $\sqrt{98 a^{2} x}$ and $\sqrt{288 a^{4} x^{5}}$. Ans. $\left(7 a+12 a^{2} x^{2}\right) \sqrt{2 x}$.
\downarrow
8. $\sqrt{72}$ and $\sqrt{128}$.
9. $\sqrt{27}$ and $\sqrt{147}$. Ans. $14 \sqrt{2}$.
10. $\sqrt{\frac{2}{3}}$ and $\sqrt{\frac{27}{50}}$.
11. $2 \sqrt{a^{2} b}$ and $3 \sqrt{64 b x^{4}}$.

Ans. $\left(2 a+24 x^{2}\right) \sqrt{b}$.
12. $\sqrt{243}$ and $10 \sqrt{363}$. Ans. $119 \sqrt{3}$.
13. $\sqrt{320 a^{2} b^{2}}$ and $\sqrt{245 a^{8} b^{6}}$. Ans. $\left(8 a b+7 a^{4} b^{3}\right) \sqrt{5}$.
14. $\sqrt{75 a^{6} b^{7}}$ and $\sqrt{300 a^{6} b^{5}}$. Ans. $\left(5 a^{3} b^{3}+10 a^{3} b^{2}\right) \sqrt{3 b}$.

145. Radicals are subtracted like other algebraic quancities; hence, the following

> RULE.
I. If the radicals are similar, subtract the coefficient of the subtrahend from that of the minuend, and to the differ. ence annex the common radical:
II. If the radicals are not similar, indicate the operation by the minus sign.

EXAMPLES.

1. What is the difference between $3 a \sqrt{b}$ and $a \sqrt{b}$?

Here,

$$
3 a \sqrt{b}-a \sqrt{b}=2 a \sqrt{b} . \quad \text { Ans. }
$$

145. Give the rule for the subtraction of medicals.
146. From $9 a \sqrt{27 b^{2}}$ subtract $6 a \sqrt{27 b^{2}}$. First, $9 a \sqrt{27 b^{2}}=27 a b \sqrt{3}$, and $6 a \sqrt{27 b^{2}}=13 a b \sqrt{3}$; and, $\quad 27 a b \sqrt{3}-18 a b \sqrt{3}=9 a b \sqrt{3}$. Ans.

Find the differences between the following:
3. $\sqrt{75}$ and $\sqrt{48}$.
4. $\sqrt{24 a^{2} b^{2}}$ and $\sqrt{54 b^{4}}$.
5. $\sqrt{\frac{3}{5}}$ and $\sqrt{\frac{5}{27}}$.
6. $\sqrt{128 a^{3} b^{2}}$ and $\sqrt{32 a^{9}}$. Ans. $\left(8 a b-4 a^{4}\right) \sqrt{2 a}$.
7. $\sqrt{48 a^{3} b^{3}}$ and $\sqrt{9 a b}$. Ans. $4 a b \sqrt{3 a b}-3 \sqrt{a b}$.
8. $\sqrt{242 a^{5} b^{5}}$ and $\sqrt{2 a^{3} b^{3}}$. Ans. $\left(11 a^{2} b^{2}-a b\right) \sqrt{2 a b}$.
9. $\sqrt{\frac{3}{4}}$ and $\sqrt{\frac{3}{9}}$.
10. $\sqrt{320 a^{2}}$ and $\sqrt{80 a^{2}}$.
11. $\sqrt{720 a^{3} b^{3}}$ and $\sqrt{245 a b c^{2} d^{2}}$.

Ans, $(12 a b-7 c d) \sqrt{5 a b}$.
12. $\sqrt{968 a^{2} b^{2}}$ and $\sqrt{200 a^{2} b^{2}}$. Ans. $12 a b \sqrt{2}$.
13. $\sqrt{112 a^{8} b^{6}}$ and $\sqrt{28 a^{8} b^{6}}$.

MULTIPLICATION OF RADICALS.

E46. Radicals are multiplied like other algebraic quan. lities; hence, we have the following
RULE.

1. Multiply the coefficients together for a new coefficient:

[^41]II. Multiply together the quantities under the radical signs:
III. Then reduce the result to its simplest form.

1. Multiply $3 a \sqrt{b c}$ by $2 \sqrt{a b}$.

$$
3 a \sqrt{b c} \times 2 \sqrt{a b}=3 a \times 2 \times \sqrt{b c} \times \sqrt{a b} .
$$

which, by Art. 139, $=6 a \sqrt{b^{2} a c}=6 a b \sqrt{a c}$.
Multiply the following:
2. $3 \sqrt{5 a b}$ and $4 \sqrt{20 a}$. Ans. $120 a \sqrt{b}$.
3. $2 a \sqrt{b c}$ and $3 a \sqrt{b c}$. Ans. $6 a^{2} b c$.
4. $2 a \sqrt{a^{2}+b^{2}}$ and $-3 a \sqrt{a^{2}+b^{2}}$. A. $-6 a^{2}\left(a^{2}+b^{2}\right.$.)
5. $\curvearrowleft a b \sqrt{a+b}$ and $a c \sqrt{a-b}$. Ans. $2 a^{2} b c \sqrt{a^{2}-b^{2}}$.
6. $3 \sqrt{2}$ and $2 \sqrt{8}$. Ans. 24.
7. $\frac{5}{3} \sqrt{\frac{2}{3} a^{2} b}$ and ${ }^{2} \sigma \sqrt{\frac{2}{5} c^{2} b}$. Ans. $\frac{1}{3 万} a b c \sqrt{15}$.
8. $2 x+\sqrt{b}$ and $2 x-\sqrt{b}$. Ans. $4 x^{2}-b$
9. $\sqrt{a+2 \sqrt{b}}$ and $\sqrt{a-2 \sqrt{b}}$. Ans. $\sqrt{a^{2}-4 b}$.
10. $3 a \sqrt{27 a^{3}}$ by $\sqrt{2 a}$.

Ans. $9 a^{3} \sqrt{6}$

DIVISION OF RADICALS.

147. Radical quantities are divided like other algebraio quantities ; hence, we have the following
RULE.
I. Divide the coefficient of the dividend by the coefficiont of the divisor, for a newo coefficient:
148. Give the rule for the division of radicals.
II. Divide the quantities under the radicals, in the same manner:
III. Then reduce the result to its simplest form.

EXAMPLES.

1. Divide $8 a \sqrt{b^{3} c}$ by $4 a \sqrt{b c^{3}}$.

$$
\frac{8 a}{4 a}=2, \text { new coefficient. }
$$

Art. 140, $\quad \frac{\sqrt{b^{3} c}}{\sqrt{b c^{3}}}=\sqrt{\frac{b^{3} c}{b c^{3}}}=\sqrt{\frac{b^{2}}{c^{2}}}=\frac{b}{c}$;
hence, the quotient is $2 \times \frac{b}{c}=\frac{2 b^{\circ}}{c}$.
2. Divide $5 a \sqrt{b}$ by $2 b \sqrt{c}$. Ans. $\frac{5 a}{2 b} \sqrt{\frac{b}{c}}$.
3. Divide $12 a c \sqrt{6 b c}$ by $4 c \sqrt{2 b}$. Ans. $3 a \sqrt{3 c}$.
4. Divide $6 a \sqrt{96 b^{4}}$ by $3 \sqrt{8 b^{2}}$. Ans. $4 a b \sqrt{3}$.
5. Divide $4 a^{2} \sqrt{50 b^{5}}$ by $2 a^{2} \sqrt{5 b}$. Ans. $2 b^{2} \sqrt{10}$.
6. Divide $26 a^{3} b \sqrt{81 a^{2} b^{2}}$ by $13 a \sqrt{9 a b}$. A. $6 a^{2} b \sqrt{a b}$.
7. Divide $84 a^{3} b^{4} \sqrt{27 a c}$ by $42 a b \sqrt{3 a}$. A. $6 a^{2} b^{3} \sqrt{c}$.
8. Divide $\sqrt{\frac{1}{8} \alpha^{2}}$ by $\sqrt{2}$.

Ans. $\frac{1}{4} a_{\text {a }}$
9. Divide $6 a^{2} b^{2} \sqrt{20 a^{3}}$ by $12 \sqrt{5 a}$. Ans. $a^{3} b^{2}$.
10. Divide $6 a \sqrt{10 b^{2}}$ by $3 \sqrt{5}$. Ans. $2 a b \sqrt{2}$.
11. Divide $48 b^{4} \sqrt{15}$ by $2 b^{2} \sqrt{\frac{1}{15}} \quad$ Ans. $360 b^{2}$.
12. Divide $8 a^{2} b^{4} c^{3} \sqrt{7 d^{3}}$ by $2 a \sqrt{28 d}$. Ans. $2 a b^{4} c^{3} d_{0}$
13. Divide $96 a^{4} c^{3} \sqrt{98 b^{5}}$ by $48 a b c \sqrt{2 b}$. A. $14 a^{3} b c^{2}$.
14. Divide $27 u^{5} b^{6} \sqrt{21 a^{3}}$ by $\sqrt{7 a}$. Ans. $27 a^{6} b^{6} \sqrt{3}$.
15. Divile $18 a^{8} b^{6} \sqrt{8 u^{4}}$ by $6 a b \sqrt{u^{2}}$. Ans. $6 a^{8} b^{5} \sqrt{2}$.

SQUARE ROOT OF POLYNOMLALS.

1.28. Before explaining the rule for the extraction of the square root of a polynomial, let us first examine the squares of several polynomials: we have,

$$
\begin{gathered}
(a+b)^{2}=a^{2}+2 a b+b^{2} \\
(a+b+c)^{2}=a^{2}+2 a b+b^{2}+2(a+b) c+c^{2} \\
(a+b+c+d)^{2}=a^{2}+2 a b+b^{2}+2(a+b) c+c^{3} \\
+2(a+b+c) d+d^{2}
\end{gathered}
$$

The law by which these squares are formed can be enun cated thus:

The square of any polynomial is equal to the square of the first term, plus twice the product of the first term by the second, plus the square of the second; plus twice the first tico terms multiplied by the third, plus the square of the third; plus twice the first three terms multiplied by the fourth, plus the squure of the fourth ; and so on.
149. Hence, to extract the square root of a polynomial, we have the following

RULE。

I. Arrange the polynomial with reference to one of its letters, and extract the square root of the first term: this will give the first term of the root:

[^42]II. Divide the second term of the polynomial by double the first term of the root, and the quotient will be the second term of the root:
III. Then form the square of the algebraic sum of the two terms of the root found, and subtract it from the firse polynomial, and then divide the first term of the remainder by double the first term of the root, and the quotient will be the third term:
IV. Form the double product of the sum of the first and second terms by the third, and add the square of the third: then subtract this result from the last remainder, and divide the first term of the result so obtained, by double the first term of the root, and the quotient will be the fourth term. Then proceed in a similar manner to find the other terms.

LXAMPLES.

1. Extract the square root of the polynomial,

$$
48 a^{2} b^{2}-24 a b^{3}+25 a^{4}-30 a^{3} b+16 b^{4} .
$$

First arrange it with reference to the letter a.

$$
\begin{gathered}
\frac{25 a^{4}-30 a^{3} b+49 a^{2} b^{2}-24 a b^{3}+16 b^{4}}{25 a^{4}-30 a^{3} b+9 a^{2} b^{2}} \\
\frac{40 a^{2} b^{2}-24 a b^{3}+16 b^{4}}{40 a^{2} b^{2}-24 a b^{3}+16 b^{4}} \\
0 . \operatorname{.} .1 \text {. . . } 2 d \text { Rem. } \\
\frac{5 a^{2}-3 a b+4 b^{3}}{10 a^{2}} d \\
\hline
\end{gathered}
$$

After having arranged the polycomial with reference to a, extract the square root of $25 a^{4}$; this gives $5 a^{2}$, which is placed at the right of the polynomial : then divide the second term, $-30 a^{3} b$, by the double of $5 a^{2}$, or $10 a^{2}$; the quotient is $-3 a b$, which is placed at the right of $5 a^{2}$. Hence, the first two terms of the root are $5 a^{2}-3 a b$. Squaring this binomial, it becomes $25 a^{4}-30 a^{3} b+9 a^{2} b^{2}$, which, subtracted from the proposed polynomial, gives a remainder, of which the first term is $4 \varrho a^{2} b^{2}$. Dividing this
first term by $10 a^{2}$, (the double of $5 a^{2}$), the quotient is $+4 b^{2}$; this is the third term of the root, and is written on the right of the first two terms. By forming the double product of $5 a^{2}-3 a b$ by $4 b^{2}$, squaring $4 b^{2}$, and taking the sum, we find the polynomial $40 a^{2} b^{2}-24 a b^{3}+16 b^{4}$, which, subtracted from the first remainder, gives 0 . Therefore, $5 a^{2}-3 a b+4 b^{2}$ is the required root.
2. Find the square root of $a^{4}+4 a^{3} x+6 a^{2} x^{2}+4 a x^{3}+x^{4}$.

$$
\text { Ans. } a^{2}+2 a x+x^{2} .
$$

3. Find the square root of $a^{4}-4 a^{3} x+6 a^{2} x^{2}-4 a x^{3}+x^{4}$. Ans. $a^{2}-2 a x+x^{2}$.
4: Find the square root of

$$
\begin{aligned}
& 4 x^{6}+12 x^{5}+5 x^{4}-2 x^{3}+7 x^{2}-2 x+1 \\
& \text { Ans. } 2 x^{3}+3 x^{2}-x+1
\end{aligned}
$$

5. Find the square root of

$$
\begin{aligned}
9 a^{4}-12 a^{3} b+28 a^{2} b^{2}- & 16 a b^{3}+16 b^{4} \\
& \text { Ans. } 3 a^{2}-2 a b+4 b^{2}
\end{aligned}
$$

6. What is the square root of

$$
\begin{aligned}
& x^{4}-4 a x^{3}+4 a^{2} x^{2}-4 x^{2}+ 8 a x+4 ? \\
& \text { Ars. } x^{2}-2 a x-2 .
\end{aligned}
$$

7. What is the square root of

$$
\begin{aligned}
& 9 x^{2}-12 x+6 x y+y^{2}-4 y+4 ? \\
& \text { Anse } 3 x+y-2
\end{aligned}
$$

8. What is the square root of $y^{4}-2 y^{2} x^{2}+2 x^{2}-2 y^{2}$ $+1+x^{6}$? Ans. $y^{2}-\sigma^{2}-1$.
9. What is the square root of $9 a^{4} b^{4}-30 a^{3} b^{3}+25 a^{2} b^{2}$? Ans. $5 a^{2} b^{2}-5 a b$.
10. Find the square root of

$$
\begin{gathered}
25 a^{4} b^{2}-40 a^{3} b^{2} c+76 a^{2} b^{2} c^{2}-48 a b^{2} c^{3}+30 b^{2} c^{4}-30 a^{4} b c \\
+24 a^{3} b c^{2}-36 a^{2} b c^{3}+9 u^{4} c^{2} \\
\text { Aus. } 5 a^{2} b-3 u^{2} c-4 a b c+5 b c^{2}
\end{gathered}
$$

150. Wa will conclude this subject with the following remarks:

1st. A binomiai can never be a perfect square, since we know that the square of the most simple polynomal, viz. a binomial, contains three distinct parts, which cannot ex perience auy reduction amongst themselves. Thus, the expression $a^{2}+b^{2}$, is not a perfect square; it wants the term $\pm 2 a b$, in order that it should be the square of $a \pm b$.

2 d . In order that a trinomial, when arranged, may be a perfect square, its two extreme terms must be squares, and the middle term must be the double product of the square roots of the two others. Therefore, to obtain the square root of a trinomial when it is a perfect square: Extract the roots of the two extreme terms, and give these roots the same or contrary signs, according as the middle term is positive or negative. To verify it, see if the double product of the two roots is the same as the middle term of the trinomial. Thus,

$$
9 a^{6}-48 a^{4} b^{2}+64 a^{2} b^{4}, \text { is a perfect square },
$$

since,

$$
\sqrt{9 a^{6}}=3 a^{3}, \text { and } \sqrt{64 a^{2} b^{4}}=-8 a b^{2} ;
$$

and also,

$$
2 \times 3 a^{3} \times-8 a b^{2}=-48 a^{4} b^{2}=\text { the middle term }
$$

But, $4 a^{2}+14 a b+9 b^{2}$ is not a perfect square: for, although $4 a^{2}$ and $+9 b^{2}$ are the squares of $2 a$ and $3 b$, yet $2 \times 2 a \times 3 b$ is not equal to $14 a b$.

3 d . In the series of operations required by the general rule, when the first term of one of the remainders is not exactly divisible by twice the first term of the root, we may

[^43]conclude that the proposed polynomial is not a perfect square. This is an evident consequence of the course of reasoning by which we have arrived at the general rule tor extracting the square root.

41h. When the polynomial is zot a perfect square, it may sometimes be simplified (See Art. 139).

Take, for example, the expression, $\sqrt{a^{3} b+4 a^{2} b^{2}+4 a b^{3}}$
The quantity under the radical is not a perfect square; but it can be put under the form $a b\left(a^{2}+4 a b+4 b^{2}\right.$. Now, the factor within the parenthesis is evidently the square of $a+2 b$, whence, we may conclude that,

$$
\sqrt{a^{3} b+4 a^{2} b^{2}+4 a b^{3}}=(a+2 b) \sqrt{a b} .
$$

2. Reduce $\sqrt{2 a^{2} b-4 a b^{2}+2 b^{3}}$ to its simplest form.

Ans. $(a-b) \sqrt{2 \bar{b}}$

CHAPTER VIII.

EQUATIONS OF THE SECOND DEGREE.

Equations contatning one unknown quantity.
151. An Equation of the second degree containing but one unknown quantity, is one in which the greatest exponent is equal to 2. Thus,

$$
x^{2}=a, \quad a x^{2}+b x=c,
$$

are equations of the second degree.
152. Let us see to what form every equation of the second degree may be reduced.
Take any equation of the second degree, as,

$$
(1+x)^{2}-\frac{3}{4} x-10=5-\frac{x}{4}+\frac{x^{2}}{2} .
$$

Clearing of fractions, and performing indicated operations, we have,

$$
4+8 x+4 x^{2}-3 x-40=20-x+2 x^{2} .
$$

Transposing the unknown terms to the first member, the known terms to the second, and arranging with reference to the powers of x, we have,

$$
4 x^{2}-2 x^{2}+8 x-3 x+x=20+40-4 ;
$$

151. What is an equation of the second degree? Give an example.
152. To what form may every equation of the second degree be reduced p

EQUATIONS いF THE SECOND DEGREE. 199
and, by reducing,

$$
2 x^{2}+6 x=56 ;
$$

dividing ly the coeflicient of x^{2}, we have,

$$
x^{2}+3 x=28
$$

If we denote the coefficient of x by $2 p$, and the second member by q, we have,

$$
x^{2}+2 p x=q .
$$

This is called the reduced equation.
153. When the reduced equation is of this form, it contains three terms, and is called a complete equation. The terms are,
Finst Term.-The second power of the unknown quantity, with a plus sign.
Second Term.-The first power of the unknown quantity, with a coefficient.
Turd Term.-A known term, in the second member.
Every equation of the second degree may be reduced to this form, by the following

RULE.

I. Clear the equation of fractions, and perform all tho indicated operations:
II. Transpose all the unknown terms to the first member, and all the known terms to the second member:

[^44]III. Reduce all the terms containing the square of the unknown quantity to a single term, one factor of which is the square of the unknown quantity; reduce, also, all the terms containing the first power of the unknown quantity, to a single term:
IV. Divide both members of the resulting equatuon by the coefficient of the square of the unknown quantity.
154. A Root of an equation is such a value of the unknown quantity as, being sulstituted for it, will satisfy the equation; that is, make the two members equal.

The Solution of an equation is the operation of finding its roots.

INCOMPLETE EQUATIONS.

155. It may happen, that $2 p$, the coefficient of the first power of x, in the equation $x+2 p x=q$, is equal to 0 . In this case, the first power of \boldsymbol{x} will disappear, and the equation will take the form,

$$
\begin{equation*}
x^{2}=q \quad . \quad . \quad . \quad \text {. . } \tag{1.}
\end{equation*}
$$

This is called an incomplete equation; hence,
An incomplete equation, when reduced, contains but two terms; the square of the unknown quantity, and a known term.
156. Extracting the square root of both members of Equation (1), we have,

$$
x= \pm \sqrt{q} .
$$

154. What is the root of an equation? What is the solution of an equation?
155. What form will the reduced equation take when the coefficient of x is 0 ? What is the equation then called? How many terms are there in an incomplete equatiou? What are they?
156. What is the rule for the solution of an incomplete equation? How many roots are there in every incomplete eqration? How do thr roots compas + with each other?
```
EQUATIONS OF THE SECOND DEGREE.

Hence, for the solution of incomplete equations:

\section*{RULE.}
I. Reduce the equation to the form \(x^{2}=q\) :

II Then extract the square root of both members.
Note.-There will be two roots, numerically equa, but having contrary signs. Denoting the first by \(x^{\prime}\), and the second by \(x^{\prime \prime}\), we have,
\[
x^{\prime}=+\sqrt{q}, \quad \text { and } \quad x^{\prime \prime}=-\sqrt{q}
\]
verification:
Substituting \(+\sqrt{q}\), or \(-\sqrt{4}\), for \(x\), in Equation (1), we have,
\[
(+\sqrt{q})^{2}=q ; \quad \text { and }, \quad(-\sqrt{q})^{2}=q
\]
hence, both satisfy the equation; they are, therefore, roots (Art. 154.)

\section*{EXAMPLES.}
1. What are the values of \(x\) in the equation,
\[
3 x^{2}+8=5 x^{2}-10 ?
\]

By transposing, \(3 x^{2}-5 x^{2}=-10-8\).
Reducing, \(\quad-2 x^{2}=-13\).
Dividing by \(-2, \quad x^{2}=9\).
Estracting square root, \(x= \pm \sqrt{9}=+3\) and -3 . Hence, \(\quad x^{\prime}=+3\), and \(x^{\prime \prime}=-3\).
2. What are the roots of the equation,
\[
\begin{aligned}
3 x^{2}+6= & 4 x^{2}-10 ? \\
& \text { \&us. } x^{\prime}=+4, x^{\prime \prime}=-4 .
\end{aligned}
\]
3. What are the roots of the equation,
\[
\begin{aligned}
& \frac{1}{3} x^{2}-8=\frac{x^{2}}{9}+10 \\
& \text { Ans. } x^{\prime}=+9, \quad x^{\prime \prime}=-9
\end{aligned}
\]
4. What are the roots of the equation,
\[
\begin{aligned}
& 4 x^{2}+13-2 x^{2}=45 ? \\
& \text { Ans. } x^{\prime}=+4, x^{\prime \prime}=-4
\end{aligned}
\]
5. What are the roots of the equation,
\[
\begin{aligned}
6 x^{2}-7 & =3 x^{2}+5 ? \\
& \text { Ans. } x^{\prime}=+2, x^{\prime \prime}=-2
\end{aligned}
\]
6. What are the roots of the equation,
\[
\begin{aligned}
8+5 x^{2}= & \frac{x^{2}}{5}+4 x^{2}+28 ? \\
& \text { Ans. } x^{\prime}=+5, x^{\prime \prime}=-5
\end{aligned}
\]
7. What are the roots of the equation,
\[
\begin{aligned}
\frac{3 x^{2}+5}{8}-\frac{x^{2}+29}{3} & =117-5 x^{2} ? \\
\text { Ans. } & x^{\prime}=+5, x^{\prime \prime}=-5
\end{aligned}
\]
8. What are the roots of the equation,
\[
\begin{aligned}
& x^{2}+a b=5 x^{2} ? \\
& \text { Ans. } x^{\prime}=+\frac{1}{2} \sqrt{\dot{u b}}, x^{\prime \prime}=-\frac{1}{2} \sqrt{a b}
\end{aligned}
\]

9 What are the roots of the equation,
\[
\begin{gathered}
x \sqrt{a+x^{2}}=b+x^{2} ? \\
\text { Ans. } x^{\prime}=\frac{b}{\sqrt{a-2} b}, x^{\prime \prime}=-\frac{b}{\sqrt{a-2 b}}
\end{gathered}
\]

\section*{PROBLEMS.}
1. What number is that which being multiplied by itself the product will be 144 ?

Let \(x=\) the number: then,
\[
x \times x=x^{2}=144
\]

It is plain that the value of \(x\) will be found by extracting the square root of both members of the equation: that is,
\[
\sqrt{x^{2}}=\sqrt{144}: \text { that is, } x=12
\]
2. A person being asked how much money he had, said, if the number of dollars be squared and 6 be added, the sum will be 42 : how much had he?

Let \(x=\) the number of dollars.
Then, by the conditions,
hence, and,
\[
\begin{aligned}
x^{2}+6 & =42 \\
x^{2}=42-6 & =36 \\
x & =6
\end{aligned}
\]
3. A grocer being asked how much sugar he had sold to a person, answered, if the square of the number of pounds be multiplied by 7, the product will be 1575 . How many pounds had he sold?

Denote the number of pounds by \(x\). Then, by the conditions of the question,
\[
7 x^{2}=1575
\]
hence,
\[
x^{2}=225
\]
and,
\[
x=15
\]

Ans. 15.
4. A person being asked his age, said, if from the sqnare
of my age in years, you take 192 years, the remainder will be the square of half my age: what was his age?

Denote the number of years in his age by \(x\).
Then, by the conditions of the question,
\[
x^{2}-192=\left(\frac{1}{2} x\right)^{2}=\frac{x^{2}}{4}
\]
and by clearing the fractions,
bence,
and,
\[
\begin{aligned}
4 x^{2}-768 & =x^{2} \\
4 x^{2}-x^{2} & =768 \\
3 x^{2} & =768 \\
x^{2} & =256 \\
x & =16 \quad \text { Ans. } 16 \text { years. }
\end{aligned}
\]
5. What number is that whose eightn part multiplied by its fifth part and the product divided by 4 , will give a quotient equal to 40 ?

Let \(x=\) the number.
By the conditions of the question,
bence,
\[
\begin{gathered}
\left(\frac{1}{8} x \times \frac{1}{5} x\right) \div 4=40 ; \\
\frac{x^{2}}{160}=40
\end{gathered}
\]
by clearing of fractions,
\[
\begin{aligned}
& x^{2}=6400, \\
& x=80 . \quad \text { Ans. 8u. }
\end{aligned}
\]
6. Find a number such that onc-third of it multiplied by one fourth shall be equal to 108.

Ans. 36.
7. What number is that whose sixth part multiplied by its fifh part and the product divided by ten, will give a guotient equal to 3 ?

Aus. 80
8. What number is that whose square, plus 18 , will be equal to half the square, plus \(30 \frac{1}{2}\) ? Ans. 5.
9. What numbers are those which are to each other as 1 to 2 , and the difference of whose squares is equal to 75 ?

Let \(x=\) the less number. Then, \(2 x=\) the greater.

Then, by the conditions of the question,
\[
4 x^{2}-x^{2}=75 ;
\]
hence,
\[
3 x^{2}=75
\]
sid by dividing by \(3, x^{2}=25\), and \(x=5\), and, \(\quad 2 x=10\).
10. What two numbers are those which are to each other as 5 to 6 , and the difference of whose squares is 44 ?

Let \(x=\) the greater number.
Then, \({ }_{6}^{5} x=\) the less.
By the conditions of the problem,
\[
x^{2}-\frac{25}{36} x^{2}=44 ;
\]
by clearing of fractions,
\[
\begin{aligned}
36 x^{2}-25 x^{2} & =1584 ; \\
11 x^{2} & =1584 \\
x^{2} & =144 ; \\
x & =12 \\
5 & \\
\frac{5}{6} & =10
\end{aligned}
\]
hence,
hence,
and,
11. What two numbers are those which are to each other as 3 to 4 , and the difference of whose squares is 28 ?
\[
\text { Ans. } 6 \text { and } 8 .
\]
12. What two numbers are those which are to each other as 5 to 11 , and the sum of whose squares is 584 ?

Ans. 10 and 22.
13. \(A\) says to \(B\), my son's age is one quarter of yours, and the difference between the squares of the numbers representing their ages is 240 : what were their ages?
\[
\text { Ans. } \begin{cases}\text { Eldest, } & 16, \\ \text { Younger, } & 4 .\end{cases}
\]

Two unknown quantities.
15\%. When there are two or more unknown quantities:
I. Eliminate one of the unknown quantities by Art. 113:
- II. Then extract the square root of both members of the equation.

\section*{PROBLEMS.}
1. There is a room of such dimensions, that the difference of the sides multiplied by the less, is equal to 36 , and the product of the sides is equal to 360 : what are the sides?

Let \(x=\) the length of the less side;
\[
y=\text { the length of the greater. }
\]

Then, by the first condition,
\[
\begin{array}{rlrl} 
& & (y-x) x & =36 ; \\
\text { and by the 2d, } & x y & =360 .
\end{array}
\]

\footnotetext{
157. How do ysu proceed when there are two or more unknown quantities?
}

From the first equation, we have,
and by subtraction,
\[
x y-x^{2}=36 ;
\]

Hence,
\[
\begin{aligned}
x=\sqrt{324}= & 18 \\
y=\frac{360}{18}= & 20 \\
& \text { Ans. } x=18, y=20 .
\end{aligned}
\]
2. A merchant sells two pieces of muslin, which together measure 12 yards. He received for each piece just so many dollars per yard as the piece contained yards. Now, he gets four times as much for one piece as for the other : how many yards in each piece?

Let \(x=\) the number of yards in the larger piece;
\[
y=\text { the number of yards in the shorter piece. }
\]

Then, by the conditions of the question,
\[
x+y=12
\]
\(x \times x=x^{2}=\) what he got for the larger piece;
\(y \times y=y^{2}=\) what he got for the shorter;
and, \(\quad x^{2}=4 y^{2}\), by the 2 d condition,
\[
x=2 y, \text { by extracting the square root. }
\]

Substituting this value of \(x\) in the first equation, we have,
\[
\begin{aligned}
y+2 y & =12 ; \\
y & =4, \\
x & =8 .
\end{aligned}
\]
and, consequently, and,

Ans. 8 and 4.
3. What two numbers are those whose product is 30 , and the quotient of the greater by the less, \(3 \frac{1}{3}\) ? Ans. 10 and 3.
4. The product of two numbers is \(a\), and their quotient \(\delta\) : what are the numbers?
\[
\text { Ans. } \sqrt{u b} \text {, and } \sqrt{\frac{a}{b}} \text {. }
\]
5. The sum of the squares of two numbers is 117 , and the difference of their squares 45 : what are the numbers?

Ans. 9 and 6.
6. The sum of the squares of two numbers is \(a\), and the difference of their squares is \(b\) : what are the numbers?
\[
\text { Ans. } x=\sqrt{\frac{a+b}{2}}, y=\sqrt{\frac{a-b}{2}}
\]
7. What two numbers are those which are to each other as 3 to 4 , and the sum of whose squares is 225 ?

Ans. 9 and 12
8. What two numbers are those which are to each other as \(m\) to \(n\), and the sum of whose squares is equal to \(a^{2}\) ?
\[
\text { Ans. } \frac{m a}{\sqrt{m^{2}}+n^{2}}, \frac{n a}{\sqrt{m^{2}+n^{2}}}
\]
9. What two numbers are those which are to each other as 1 to 2 , and the difference of whose squares is 75 ?
\[
\text { Ans. } 5 \text { and } 10 .
\]
10. What two numbers are those which are to each other as \(m\) to \(n\), and the difference of whose squares is equal to \(b^{2}\) ?
\[
A n s . \frac{m b}{\sqrt{m^{2}-n^{2}}}, \frac{n b}{\sqrt{m^{2}-n^{2}}}
\]
11. A certain sum of money is placed at interest for six months, at 8 per cent. per annum. Now, if the sum put at interest be multiplied by the number expressing the interest, the product will be \(\$ 562500\) : what is the principal at m terest? Ans. \(\$ 3750\).
12. A person distributes a sum of money between a num. ber of women and boys. The number of women is to the number of boys as 3 to 4 . Now, the boys receive one-half as many dollars as there are persons, and the women, twice as many dollars as there are boys, and together they receive

138 dollars: how many women were there, and how many boys?

Ans. \(\left\{\begin{array}{l}36 \text { women. } \\ 48 \text { boys. }\end{array}\right.\)

\section*{COMPLETE EQUATIONS.}

158 The reduced form of the complete equation (Art. 153) is,
\[
x^{2}+2 p x=q .
\]

Comparing the first member of this equation with the equare of a binomial (Art. 54), we see that it needs but the square of half the coefficient of \(x\), to make it a perfect square. Adding \(p^{2}\) to both members (Ax. 1, Art. 102) \({ }_{2}\) we have,
\[
x^{2}+2 p x+p^{2}=q+p^{2} .
\]

Then, extracting the square root of both members (Ax. 5), we have,
\[
x+p= \pm \sqrt{q+p^{2}} .
\]

Transposing \(p\) to the second member, we have,
\[
x=-p \pm \sqrt{q+p^{2}}
\]

Hence, there are two roots, one corresponding to the plus sign of the radical, and the other to the minus sign. Denoting these roots by \(x^{\prime}\) and \(x^{\prime \prime}\), we have,
\[
x^{\prime}=-p+\sqrt{q+p^{2}}, \text { and } x^{\prime \prime}=-p-\sqrt{q+p^{2}} .
\]

The root denoted by \(x^{\prime}\) is called the first root ; that denoted by \(x^{\prime \prime}\) is called the second root.

\footnotetext{
158. What is the form of the reduced equation of the second degree? What is the square of the binomial \(x+p\) ? How many of those terns are found in the first term of the reduced equation? What must be added to make the first member a perfect square? How many roots are there in every equation of the first degree! What is the first root equal to? What is the second equal to?
}
159. The operation of squaring half the coefficient of \(x\) and adding the result to both members of the equation, is called Completing the Square. For the solution of every complete equation of the second degree, we have the following

\section*{RULE.}
I. Reduce the equation to the form, \(x^{2}+2 p x=q\) :
II. Take half the coefficient of the second term, square it, and add the result to both members of the equation:
III. Then extract the square root of both members ; after which, transpose the known term to the second member.

Note.-Although, in the beginning, the student should complete the square and then extract the square root, yet he should be able, in all cases, to write the roots immediately, by the following (See Art. 158)

\section*{RULE.}
I. The first root is equal to half the coefficient of the second term of the reduced equation, taken with a contrary sign, plus the square root of the second member increased by the square of half the coefficient of the second term:
II. The second root is equal to half the coefficient of the second term of the reduced equation, taken with a contrary sign, minus the square root of the second member increased by the square of half the coefficient of the second term.
160. We will now show that the complete equation of

\footnotetext{
159. What is the operation of completing the square? How many eperations are there in the solution of every equation of the second dem gree? What is the first? What the second? What the third? Give the rule for writing the roots without completing the square?
150. How many forms will the complete equation of the second degree assume? On what will these forms depend? What are the signs of \(2 f\)
}
the second degree will take four forms, dependent on the signs of \(2 p\) and \(q\).
1st. Let us suppose \(2 p\) to be positive, and \(q\) positire; we shall then have,
\[
\begin{equation*}
x^{2}+2 p x=q . \tag{1.}
\end{equation*}
\]

2d. Let us suppose \(2 p\) to be negative, and \(q\) positive we shall then have,
\[
\begin{equation*}
x^{2}-2 p x=q \tag{2.}
\end{equation*}
\]

3d. Let us suppose \(2 p\) to be positive, and \(q\) negative; we shall then have,
\[
\begin{equation*}
x^{2}+2 p x=-q . \tag{3.}
\end{equation*}
\]

4th. Let us suppose \(2 p\) to be negative, and \(q\) negative; we shall then have,
\[
\begin{equation*}
x^{2}-2 p x=-q \tag{4.}
\end{equation*}
\]

As these are all the combinations of signs that can talee plare between \(2 p\) and \(q\), we conclude that every complete equation of the second degree will be reduced to one or the other of these four forms:
\[
\begin{array}{ll}
x^{2}+2 p x=+q, & \text {. . 1st form. } \\
x^{2}-2 p x=+q, & \text {. . 2d form. } \\
x^{2}+2 p x=-q, & \text {. . 3d form. } \\
x^{2}-2 p x=-q, & \text {. . 4th form. }
\end{array}
\]
examples of the first form.
1. What are the values of \(x\) in the equation,
\[
2 x^{2}+8 x=64 ?
\]

If we first divide by the coefficient 2 , we obtain
\[
x^{2}+4 x=32 .
\]

\footnotetext{
and \(q\) in the first form? What in the second? What in the third? What in the fourth?
}

Then, completing the square,
\[
x^{2}+4 x+4=32+4=36
\]

Extracting the root,
\[
x+2= \pm \sqrt{36}=+6, \text { and }-6
\]

Hence,
\[
\begin{array}{ll}
\text { Hence, } & x^{\prime}=-2+6=+4 \\
\text { and, } & x^{\prime \prime}=-2-6=-8
\end{array}
\]

Hence, in this form, the smaller root, numerically, is positive and the larger negative.

\section*{VERIFICATION.}

If we take the positive value, viz. : \(x^{\prime}=+4\),
the equation,
\[
\begin{array}{r}
x^{2}+4 x=32 \\
4^{2}+4 \times 4=32
\end{array}
\]
gives
and if we take the negative value of \(x\), viz. : \(x^{\prime \prime}=-8\), the equation, \(\quad x^{2}+4 x=32\),
gives
\[
(-8)^{2}+4(-8)=64-32=32
\]
from which we see that either of the values of \(x\), viz: \(x^{\prime}=+4\), or \(x^{\prime \prime}=-8\), will satisfy the equation.
2. What are the values of \(x\) in the equation,
\[
3 x^{2}+12 x-19=-x^{2}-12 x+89 ?
\]

By transposing the terms, we have,
\[
3 x^{2}+x^{2}+12 x+12 x=89+19
\]
and by reducing,
\[
4 x^{2}+24 x=108
\]
and dividing by the coefficient of \(x^{2}\),
\[
x^{2}+6 x=27
\]

Now, by completing the square,
\[
x^{2}+6 x+9=36 ;
\]
extracting the square root,
\[
x+3= \pm \sqrt{36}=+6, \text { and }-6
\]
bence,
\[
\begin{aligned}
x^{\prime} & =+6-3 \\
x^{\prime \prime} & =+3 ; \\
x^{\prime \prime}-3 & =-9 .
\end{aligned}
\]

\section*{velification.}

If we take the plus root, the equation,
gives
\[
x^{2}+6 x=27
\]
\[
(3)^{2}+6(3)=27 ;
\]
and for the negative rout,
\[
x^{2}+6 x=27,
\]
gives
\[
(-9)^{2}+6(-9)=81-54=87
\]
3. What are the values of \(x\) in the equation,
\[
x^{2}-10 x+15=\frac{x^{2}}{5}-34 x+155 ?
\]

By clearing of fractions, we have,
\[
5 x^{2}-50 x+75=x^{2}-170 x+775
\]
by transposing and reducing, we obtain,
\[
4 x^{2}+120 x=700
\]
then, dividing by the coefficient of \(x^{2}\), we have,
\[
x^{2}+30 x=175 ;
\]
and by completing the square,
\[
x^{2}+30 x+225=400 ;
\]
and by extracting the square root,
\[
x+15= \pm \sqrt{400}=+20, \text { and }-20
\]

Hence,
\[
x^{\prime}=+5, \text { and } x^{\prime \prime}=-35
\]

\section*{verification.}

For the plus value of \(x\), the equation,
\[
x^{2}+30 x=175
\]
gives,
\[
(5)^{2}+30 \times 5=25+150=175
\]

And for the negative value of \(x\), we have,
\[
(-35)^{2}+30(-35)=1225-1050=175
\]
4. What are the values of \(x\) in the equation,
\[
\frac{5}{6} x^{2}-\frac{1}{2} x+\frac{3}{4}=8-\frac{2}{3} x-x^{2}+\frac{273}{12} ?
\]

Clearing of fractions, we have,
\[
10 x^{2}-6 x+9=96-8 x-12 x^{2}+273
\]
transposing and reducing,
\[
22 x^{2}+2 x=360 ;
\]
dividing both members by 22 ,
\[
x^{2}+\frac{2}{22} x=\frac{360}{22}
\]

Add \(\left(\frac{1}{22}\right)^{2}\) to both members, and the equation becomes,
\[
x^{2}+\frac{2}{22} x+\left(\frac{1}{22}\right)^{2}=\frac{360}{22}+\left(\frac{1}{22}\right)^{2}
\]
whence, by extracting the square root,
\[
x+\frac{1}{22}= \pm \sqrt{\frac{360}{22}+\left(\frac{1}{22}\right)^{2}}
\]
therefore,
and,
\[
\begin{aligned}
& x^{\prime}=-\frac{1}{22}+\sqrt{\frac{360}{22}+\left(\frac{1}{22}\right)^{2}} \\
& x^{\prime \prime}=-\frac{1}{22}-\sqrt{\frac{360}{22}+\left(\frac{1}{22}\right)^{2}}
\end{aligned}
\]

It remains to perform the numerical operations. In the first place,
\[
\frac{360}{22}+\left(\frac{1}{22}\right)^{2}
\]
must be reduced to a single number, having (22) \({ }^{2}\) for its denominator. Now,
\[
\frac{360}{22}+\left(\frac{1}{22}\right)^{2}=\frac{360 \times 22+1}{(22)^{2}}=\frac{7921}{(22)^{2}}
\]
extracting the square root of 7921 , we fund it to be 89 ; therefore,
\[
\pm \sqrt{\frac{360}{22}+\left(\frac{1}{22}\right)^{2}}= \pm \frac{89}{22}
\]

Consequently, the plus value of \(x\) is,
\[
x^{\prime}=-\frac{1}{22}+\frac{89}{22}=\frac{88}{22}=4
\]
and the negative value is,
\[
x^{\prime \prime}=-\frac{1}{22}-\frac{89}{22}=-\frac{45}{11}
\]
that is, one of the two values of \(x\) which will satisfy the proposed equation is a positive whole number, and the other a negative fraction.

Note-Let the pupil be exercised in writing the roots, in the last five, and in the following examples, without com. pleting the square.
5. What are the values of \(x\) in the equation,
\[
\begin{aligned}
3 x^{2}+2 x-9=76 ? \\
\text { Ans. }\left\{\begin{array}{l}
x^{\prime}=5 . \\
x^{\prime \prime}=- \text { 就? }
\end{array}\right.
\end{aligned}
\]

6 What are the values of \(x\) in the equation,
\[
\begin{aligned}
2 x^{2}+8 x+7=\frac{5 x}{4}-\frac{x^{2}}{8}+197 ? \\
\text { Ans. }\left\{\begin{array}{l}
x^{\prime}=8 \\
x^{\prime \prime}=-11 \frac{8}{77}
\end{array}\right.
\end{aligned}
\]
7. What are the values of \(x\) in the equation,
\[
\begin{aligned}
\frac{x^{2}}{4}-\frac{x}{3}+15=\frac{x^{2}}{9}-8 x+95 \frac{1}{4} ? \\
\text { Ans. }\left\{\begin{array}{l}
x^{\prime}=9 . \\
x^{\prime \prime}=-64 \frac{1}{5} *
\end{array}\right.
\end{aligned}
\]
8. What are the values of \(x\) in the equation,
\[
\begin{aligned}
& \frac{x^{2}}{1}-\frac{5 x}{4}-8=\frac{x}{2}-7 x+6 \frac{1}{2} ? \\
& \text { Ans. }\left\{\begin{array}{l}
x^{\prime}=2 . \\
x^{\prime \prime}=-7 \frac{1}{4} .
\end{array}\right.
\end{aligned}
\]
9. What are the values of \(x\) in the equation,
\[
\begin{aligned}
& \frac{x^{2}}{2}+\frac{x}{4}=\frac{x^{2}}{5}-\frac{x}{10}+\frac{13}{20} \\
& \text { Ans. }\left\{\begin{array}{l}
x^{\prime}=1 \\
x^{\prime \prime}=-2 \%
\end{array}\right.
\end{aligned}
\]
examples of the second form.
1. What are the values of \(x\) in the equation,
\[
x^{2}-8 x+10=18 ?
\]

By transposing,
\[
x^{2}-8 x=19-10=0 ;
\]
then, by completing the square,
\[
x^{2}-8 x+16=9+16=25
\]
and by extracting the root,
\[
x-4= \pm \sqrt{25}=+5, \text { or }-5
\]

Hence,
\[
x^{\prime}=4+5=9, \text { and } x^{\prime \prime}=4-5=-1 .
\]

That is, in this form, the larger root, numerically, is positive, and the lesser negative.

\section*{verification.}

If we take the positive value of \(x\), the equation,
\[
x^{2}-8 x=9, \text { gives }(9)^{2}-8 \times 9=81-72=9 ;
\]
and if we take the negative value, the equation, \(x^{2}-8 x=9\), gives \((-1)^{2}-8(-1)=1+8=9 ;\) from which we see that both roots alike satisfy the equar tion.
2. What are the values of \(x\) in the equation,
\[
\frac{x^{2}}{2}+\frac{x}{3}-15=\frac{x^{2}}{4}+x-14 \frac{?}{3} ?
\]

By clearing of fractions, we have,
\[
6 x^{2}+4 x-180=3 x^{2}+12 x-177
\]
and l,y transposing and reducing,
\[
3 x^{2}-8 x=3 ;
\]
and dividing by the coefficient of \(x^{2}\), we obtain,
\[
x^{2}-\frac{8}{3} x=1
\]

Then, by completing the square, we have,
\[
x^{2}-\frac{8}{3} x+\frac{16}{9}=1+\frac{16}{9}=\frac{25}{9}
\]
and by extracting the square root,
\[
x-\frac{4}{3}= \pm \sqrt{\frac{25}{9}}=+\frac{5}{3}, \text { and }-\frac{5}{3}
\]

Hence,
\[
x^{\prime}=\frac{4}{3}+\frac{5}{3}=+3, \text { and } x^{\prime \prime}=\frac{4}{3}-\frac{5}{3}=-\frac{1}{3}
\]

\section*{VERIFICATION.}

For the positive root of \(x\), the equation,
\[
x^{2}-\frac{8}{3} x=1
\]
gives
\[
3^{2}-\frac{8}{3} \times 3=9-8=1
\]
and for the negative root, the equation,
\[
x^{2}-\frac{8}{3} x=1
\]
gives \(\quad\left(-\frac{1}{3}\right)^{2}-\frac{8}{3} \times-\frac{1}{3}=\frac{1}{9}+\frac{8}{9}=1\).
3. What are the values of \(x\) in the equation,
\[
\frac{x^{2}}{2}-\frac{x}{3}+7 \frac{3}{8}=8 ?
\]

Clearng of fractions, and dividing by the coefficient of \(x^{2}\), we have,
\[
x^{2}-\frac{2}{3} x=1 \frac{1}{4} .
\]

Completing the square, we have,
\[
x^{2}-\frac{2}{3} x+\frac{1}{9}=1 \neq \frac{1}{9}=\frac{49}{36} ;
\]
then, by extracting the square root, we have,
\[
x-\frac{1}{3}= \pm \sqrt{\frac{49}{36}}=+\frac{7}{6}, \text { and }-\frac{7}{6} ;
\]
hence,
\[
x^{\prime}=\frac{1}{3}+\frac{7}{6}=\frac{9}{6}=1 \frac{1}{2}, \text { and } x^{\prime \prime}=\frac{1}{3}-\frac{7}{6}=-\frac{5}{6} \text {. }
\]

VERIFICATION.
If we take the positive root of \(x\), the equation,
\[
x^{2}-\frac{2}{3} x=1 \frac{1}{4}
\]
gives
\[
\left(1 \frac{1}{2}\right)^{2}-\frac{2}{3} \times 1 \frac{1}{2}=2 \ddagger-1=1 \ddagger ;
\]
and for the negative root, the equation,
\[
x^{2}-\frac{2}{3} x=1 \frac{1}{4}
\]
give \(\quad\left(-\frac{5}{6}\right)^{2}-\frac{2}{3} \times-\frac{5}{6}=\frac{25}{36}+\frac{10}{18}=\frac{45}{38}=1 \frac{1}{4}\)
4. What are the values of \(x\) in the equation,
\[
4 a^{2}-2 x^{2}+2 a x=18 a b-18 b^{2} ?
\]

By transposing, changing the signs, and dividing by \(2_{\text {s }}\) the equation becomes,
\[
x^{2}-u x=2 a^{2}-9 a b+9 b^{2}
\]
whence, completing the square,
\[
x^{2}-a x+\frac{a^{2}}{4}=\frac{9 a^{2}}{4}-9 a b+9 b^{2}
\]
extracting the square root,
\[
x=\frac{a}{2} \pm \sqrt{\frac{9 a^{2}}{4}-9 a b+9 b^{2}}
\]

Now, the square root of \(\frac{9 a^{2}}{4}-9 a b+9 b^{2}\), is evidently \(\frac{3 a}{2}-3 b\). Therefore,
\[
x=\frac{a}{2} \pm\left(\frac{3 a}{2}-3 b\right), \text { and }\left\{\begin{array}{l}
x^{\prime}=2 a-3 b \\
x^{\prime \prime}=-a+3 b
\end{array}\right.
\]

What will be the numerical values of \(x\), if we suppose \(a=6\), and \(b=1\) ?
5. What are the values of \(x\) in the equation,
\[
\begin{aligned}
& \frac{1}{3} x-4-x^{2}+2 x-\frac{4}{5} x^{2}=45-3 x^{2}+4 x ? \\
& \text { Ans. }\left\{\begin{array}{l}
x^{\prime}=7.12 \\
x^{\prime \prime}=-5.73
\end{array}\right\} \text { to within } \\
& 0.01
\end{aligned}
\]
6. What are the values of \(x\) in the equation,
\[
\begin{array}{r}
8 x^{2}-14 x+10=2 x+34 ? \\
\text { Ans. }\left\{\begin{array}{l}
x^{\prime}=3 \\
x^{\prime \prime}=-1
\end{array}\right.
\end{array}
\]
7. What are the values of \(x\) in the equation,
\[
\begin{aligned}
& \frac{x^{2}}{4}-30+x=2 x-22 ? \\
& \text { Ans. }\left\{\begin{array}{l}
x^{\prime}=8 \\
x^{\prime \prime}=-4
\end{array}\right.
\end{aligned}
\]
8. What are the values of \(x\) in the equation,
\[
\begin{aligned}
& x^{2}-3 x+\frac{x^{2}}{2}=9 x+13 \frac{1}{2} ? \\
& \text { Ans. }\left\{\begin{array}{l}
x^{\prime}=9 . \\
x^{\prime \prime}=-1 .
\end{array}\right.
\end{aligned}
\]
9. What are the values of \(x\) in the equation,
\[
\begin{aligned}
& a a x-x^{2}=-2 a b-b^{2} ? \\
& \text { Ans. }\left\{\begin{array}{l}
x^{\prime}=2 a+b \\
x^{\prime \prime}=-b
\end{array}\right.
\end{aligned}
\]
10. What are the values of \(x\) in the equation,
\[
a^{2}+b^{2}-2 b x+x^{2}=\frac{m x^{2} x^{2}}{n^{2}} ?
\]

Ans. \(\left\{\begin{array}{l}x^{\prime}=\frac{n}{n^{2}-m^{2}}\left(b n+\sqrt{a^{2} m^{2}+b^{2} m^{2}-a^{2} n^{2}}\right) \chi \\ x^{\prime \prime}=\frac{n}{n^{2}-m^{2}}\left(b n-\sqrt{a^{2} m^{2}+b^{2} m^{2}-a^{2} n^{2}}\right)\end{array}\right.\)

> EXAMPLES OF THE THIRD FORM.
1. What are the values of \(\dot{x}\) in the equation,
\[
x^{2}+4 x=-3 ?
\]

First, by completing the square, we have,
\[
x^{2}+4 x+4=-3+4=1
\]
and by extracting the square root,
\[
x+2= \pm \sqrt{1}=+1, \text { and }-1
\]
hence, \(x^{\prime}=-2+1=-1\); and \(x^{\prime \prime}=-2-1=-3\)
That is, in this form both the roots are negative.

\section*{verification.}

If we take the first negative value, the equation,
\[
x^{2}+4 x=-3
\]
gives
\[
(-1)^{2}+4(-1)=1-4=-3
\]
and by taking the second value, the equation,
\[
x^{2}+4 x=-3
\]
\[
(-3)^{2}+4(-3)=9-12=-3 ;
\]
hence, both values of \(x\) satisfy the given equation.
2. What are the values of \(x\) in the equation,
\[
-\frac{x^{2}}{2}-5 x-16=12+\frac{1}{2} x^{2}+6 x ?
\]

By transposing and reducing, we have,
\[
-x^{2}-11 x=28 ;
\]
then, dividing by -1 , the coefficient of \(x^{2}\), we have,
\[
x^{2}+11 x=-28
\]
then, by completing the square,
\[
x^{2}+11 x+30.25=2.25
\]
hence, \(x+5.5= \pm \sqrt{\sqrt{2.25}}=+1.5\), and -1.5 ;
consequently, \(\quad x^{\prime}=-4\), and \(x^{\prime \prime}=-7\).
3. What are the values of \(x\) in the equation,
\[
\begin{aligned}
-\frac{x^{2}}{8}-2 x-5=\frac{7}{8} x^{2}+5 x+5 ? \\
\text { Ans. }\left\{\begin{array}{l}
x^{\prime}=-2 \\
x^{\prime \prime}=-5
\end{array}\right.
\end{aligned}
\]
4. What are the values of \(x\) in the equation,
\[
\begin{aligned}
& 2 x^{2}+8 x=-2 \frac{2}{3}-\frac{2}{3} x ? \\
& \text { Ans. }\left\{\begin{array}{l}
x^{\prime}=-\frac{1}{3} \\
x^{\prime}=--4
\end{array}\right.
\end{aligned}
\]
5. What are the values of \(x\) in the equation,
\[
\begin{aligned}
4 x^{2}+\frac{3}{5} x+3 x=-14 x-3 \frac{1}{5}-4 x^{2} ? \\
\text { Ans. }\left\{\begin{array}{l}
x^{\prime}=-\frac{1}{5} \\
x^{\prime \prime}=-2 .
\end{array}\right.
\end{aligned}
\]
6. What are the values of \(x\) in the equation,
\[
\begin{aligned}
-x^{2}-4-\frac{3}{4} x=\frac{4 x^{2}}{2}+24 x+2 ? \\
\text { Ans. }\left\{\begin{array}{l}
x^{\prime}=-\frac{1}{3} \\
x^{\prime \prime}=-8
\end{array}\right.
\end{aligned}
\]
7. What are the values of \(x\) in the equation,
\[
\begin{aligned}
& \frac{1}{9} x^{2}+7 x+20=-\frac{8}{9} x^{2}-11 x-60 ? \\
& \text { Ans. }\left\{\begin{array}{l}
x^{\prime}=-8 \\
x^{\prime \prime}=-10
\end{array}\right.
\end{aligned}
\]
8. What are the values of \(x\) in the equation,
\[
\begin{aligned}
& \frac{5}{6} x^{2}-x+\frac{1}{2}=-9 \frac{1}{8} x-\frac{1}{6} x^{2}-\frac{1}{2} ? \\
& \text { Ans. }\left\{\begin{array}{l}
x^{\prime}=-\frac{1}{8} \\
x^{\prime \prime}=-8
\end{array}\right.
\end{aligned}
\]
9. What are the values of \(x\) in the equation,
\[
\begin{aligned}
& \frac{4}{5} x^{2}+5 x+\frac{1}{4}=-\frac{1}{5} x^{2}-5 \frac{1}{10} x-\frac{3}{4} ? \\
& \text { Ans. }\left\{\begin{array}{l}
x^{\prime}=-\frac{1}{10} \\
x^{\prime \prime}=-10 .
\end{array}\right.
\end{aligned}
\]
10. What are the values of \(x\) in the equation,
\[
\begin{array}{r}
x-x^{2}-3=6 x+1 ? \\
\text { Ans. }\left\{\begin{array}{l}
x^{\prime}=-1 \\
x^{\prime \prime}=-4
\end{array}\right.
\end{array}
\]
11. What are the values of \(x\) in the equation,
\[
x^{2}+4 x-90=-93 ? .\left\{\begin{array}{l}
x^{\prime}=-1 \\
x^{\prime \prime}=-3
\end{array}\right.
\]
examples of tile fourtil form.
1. What are the values of \(x\) in the equation,
\[
x^{2}-8 x=-7 ?
\]

By completing the square, we hare,
\[
x^{2}-8 x+16=-7+16=0
\]
then, by extracting the square root,
\[
x-4= \pm \sqrt{9}=+3, \text { and }-3
\]
bence,
\[
x^{\prime}=+7, \text { and } x^{\prime \prime}=+1
\]

That is, in this form, both the roots are positive.

\section*{verification.}

If we take the greater root, the equation,
\(x^{2}-8 x=-7\), gives, \(7^{2}-8 \times 7=49-56==-7 ;\) and for the lesser, the equation,
\(x^{2}-8 x=-7\), gives, \(1^{2}-8 \times 1=1-8=-7\)
hence, both of the roots will satisfy the equation.
2. What are the values of \(x\) in the equation,
\[
-1 \frac{1}{2} x^{2}+3 x-10=1 \frac{1}{2} x^{2}-18 x+\frac{40}{2} ?
\]

By clearing of fractions, we have,
\[
-3 x^{2}+6 x-20=3 x^{2}-36 x+40 ;
\]
then, by collecting the similar terms,
\[
-6 x^{2}+42 x=60 ;
\]
then, by dividing by the cocfficient of \(x^{2}\), which is -6 , we have,
\[
x^{2}-7 x=-10
\]

By completing the square, we have,
\[
x^{2}-7 x+12.25=2.25
\]
and by extracting the square root of both members,
\[
x-3.5= \pm \sqrt{2.25}=+1.5, \text { and }-1.5 ;
\]
hence,
\[
x^{\prime}=3.5+1.5=5, \text { and } x^{\prime \prime}=3.5-1.5=2
\]

\section*{verification.}

If we take the greater root, the equation.
\(x^{2}-7 x=-10\), gives, \(5^{2}-7 \times 5=25-35=-10\); and if we take the lesser root, the equation, \(x^{2}-7 x=-10\), gives, \(2^{2}-7 \times 2=4-14=-10\).
3. What are the values of \(x\) in the equation,
\[
-3 x+2 x^{2}+1=17 \frac{1}{3} x-2 x^{2}-3 ?
\]

By transposing and collecting the terms, we have,
\[
4 x^{2}-20 g_{5} x=-4
\]
then dividing by the coefficient of \(x^{2}\), we have,
\[
x^{2}-5 \frac{f}{x}=-1
\]

By completing the square, we obtain,
\[
x^{2}-5 \frac{1}{5} x+\frac{169}{25}=-1+\frac{169}{25}=\frac{144}{25}
\]
and by extracting the root,
\[
x^{2}-2 \frac{3}{5}= \pm \sqrt{\frac{144}{25}}=+\frac{12}{5}, \text { and }-\frac{12}{5}
\]
hence,
\[
x^{\prime}=2 \frac{3}{5}+\frac{12}{5}=5, \text { and, } x^{\prime \prime}=2 \frac{3}{5}-\frac{12}{5}=\frac{1}{5}
\]

\section*{verification.}

If we take the greater root, the equation, \(x^{2}-5 \frac{1}{6} x=-1\), gives, \(5^{2}-5 \frac{1}{6} \times 5=25-20=-1\);
and if we take the lesser root, the equation,
\(x^{2}-5 \frac{1}{3} x=-1\) gives, \(\left(\frac{1}{5}\right)^{2}-5 \frac{1}{5} \times \frac{1}{5}=\frac{1}{25}-\frac{26}{25}=-1\)
4. What are the values of \(x\) in the equation,
\[
\begin{aligned}
& \frac{1}{5} x^{2}-3 x+\frac{1}{2}=-\frac{6}{7} x^{2}+\frac{1}{4} x-\frac{1}{4} ? \\
& \text { Ans. }\left\{\begin{array}{l}
x^{\prime}=3 \\
x^{\prime \prime}=\frac{1}{4} .
\end{array}\right.
\end{aligned}
\]
5. What are the values of \(x\) in the equation,
\[
\begin{aligned}
-4 x^{2}-\frac{1}{7} x+1 \psi=-5 x^{2}+8 x ? \\
\text { Ans. }\left\{\begin{array}{l}
x^{\prime}=8 \\
x^{\prime \prime}=\frac{1}{4}
\end{array}\right.
\end{aligned}
\]
6. What are the values of \(x\) in the equation,
\[
\begin{aligned}
& -4 x^{2}+\frac{8}{20} x-\frac{1}{40}=-3 x^{2}-\frac{1}{20} x+\frac{1}{40} ? \\
& \text { Ans. }\left\{\begin{array}{l}
x^{\prime}=\frac{1}{6} . \\
x^{\prime \prime}=\frac{1}{6} .
\end{array}\right.
\end{aligned}
\]
7. What are the values of \(x\) in the equation,
\[
x^{2}-10 \frac{1}{10} x=-1 ? \quad \text { Ans. }\left\{\begin{array}{l}
x^{\prime}=10 . \\
x^{\prime \prime}=\frac{1}{10} .
\end{array}\right.
\]
8. What are the values of \(x\) in the equation,
\[
\begin{array}{r}
-27 x+\frac{17 x^{2}}{5}+100=\frac{2 x^{2}}{5}+12 x-26 ? \\
\text { Ans. }\left\{\begin{array}{l}
x^{\prime}=7 . \\
x^{\prime \prime}=0 .
\end{array}\right.
\end{array}
\]
9. What are the values of \(x\) in the equation,
\[
\begin{array}{r}
\frac{8 x^{2}}{3}-22 x+15=-\frac{7 x^{2}}{3}+28 x-30 ? \\
\text { Ans. }\left\{\begin{array}{l}
x^{\prime}=9 . \\
x^{\prime \prime}=1 .
\end{array}\right.
\end{array}
\]
10. What are the values of \(x\) in the equation,
\[
\begin{aligned}
& 2 x^{2}-30 x+3=-x^{2}+3 \frac{3}{10} x-\frac{3}{10} ? \\
& \text { Ans. }\left\{\begin{array}{l}
x^{\prime}=11 \\
x^{\prime \prime}=1_{1}^{\prime} \sigma^{\prime}
\end{array}\right.
\end{aligned}
\]

PROPERTIES OF EQUATIONS OF THE SECOND DEGREF。

\section*{FIRST PROPERTY.}
161. We have seen (Art. 153), that every complete equation of the second degree may be reduced to the form,
\[
x^{2}+2 p x=q . \quad \text {. . . . (1.) }
\]

Completing the square, we hare,
\[
x^{2}+2 p x+p^{2}=q+p^{2}
\]
transposing \(q+p^{2}\) to the first member,
\[
\begin{equation*}
x^{2}+2 p x+p^{2}-\left(q+p^{2}\right)=0 \tag{2.}
\end{equation*}
\]

Now, since \(x^{2}+2 p x+p^{2}\) is the square of \(x+p\), and \(q+p^{2}\) the square of \(\sqrt{q+p^{2}}\), we may regard the first mensber as the difference between two squares. Factoring, (Art. 56), we have,
\(\left(x+p+\sqrt{q+p^{2}}\right)\left(x+p-\sqrt{q+p^{2}}\right)=0\).
This equation can be satisfied only in two ways:
1st. By attributing such a value to \(x\) as shall render the first factor equal to 0 ; or,

\footnotetext{
161. To what form may every equation of the second degree be reduced? What form will this equation take after completing the square and transposing to the first member? After factoring? In how many ways may Equation (8) be satisfied? What are they? How many ronts has every equation of the second degree?
}

2d. By attributing such a value to \(x\) as shall render the second factor equal to 0 .

Placing the second factor equal to 0 , we have,
\(x+p-\sqrt{q+p^{2}}=0\); and \(x^{\prime}=-p+\sqrt{q+p^{2}}\).
Placing the first factor equal to 0 , we have,
\[
\begin{equation*}
+p \rightarrow \cdot \sqrt{q+p^{2}}=0 ; \text { and } x^{\prime \prime}=-p-\sqrt{q+p^{2}} . \tag{5.}
\end{equation*}
\]

Since every supposition that will satisfy Equation (3), will also satisfy Equation (1), from which it was derived, it follows, that \(x^{\prime}\) and \(x^{\prime \prime}\) are roots of Equation (1); also, that
Every equation of the second degree has two roots, and only two.
Note.-The two roots denoted by \(x^{\prime}\) and \(x^{\prime \prime}\), are the same as found in Art. 158.

\section*{SECOND PROPERTY.}
162. We have seen (Art. 161), that every equation of the second degree may be placed under the form,
\[
\left(x+p+\sqrt{q+p^{2}}\right)\left(x+p-\sqrt{q+p^{2}}\right)=0 .
\]

By examining this equation, we see that the first factor may be obtained ly subtracting the second root from the unknown quantity \(x\); and the second factor by subtracting the first root from the unknown quantity \(x\); hence,

Every equation of the second degree may be resolved into two binomial factors of the first degree, the first terms, in both factors, being the unknown quantity, and the second terms, the roots of the equation, takien with contrary signs.

\footnotetext{
162. Into how many binomial factors of the firs: degree may every equation of the second degree be resolved? What aie the first terms of thee factors? What the second?
}

\section*{third property.}
163. If we add Equations (4) and (5), Art. 161, we have,
\[
\begin{aligned}
x^{\prime} & =-p+\sqrt{q+p^{2}} \\
x^{\prime \prime} & =-p-\sqrt{q+p^{2}} \\
\hline x^{\prime}+x^{\prime \prime} & =-2 p ;
\end{aligned} \text { that is, }
\]

In every reduced equation of the second degree, the sum of the tuco roots is equal to the coefficient of the second term wu taken with a contrary sign.

\section*{fourth property.}
164. If we multiply Equations (4) and (5), Art. 161, member by member, we have,
\[
\begin{aligned}
x^{\prime} \times x^{\prime \prime} & =\left(-p+\sqrt{q+p^{2}}\right)\left(-p-\sqrt{q+p^{2}}\right) \\
& =p^{2}-\left(q+p^{2}\right)=-q ; \text { that is, }
\end{aligned}
\]

In every equation of the second degree, the product of the two roots is equal to the known term in the second mem ber, taken with a contrary sign.
formation of equations of the second degree.
165. By taking the converse of the second property, (Art. 162), we can form equations which shall have given roots; that is, if they are known, we can find the corresponding equations by the following

\section*{RULE.}
I. Subtract each root from the unlknoren quantity:
163. Whas is the algebraic \(\$ \mathrm{~cm}\) of the roots equal to in every equation of the second degree?
164. What is the product of the roots equal to?
165. How will you find the equation wher the roots are knowe?
II. Multiply the results together, and place their proluct equal to 0 .

\section*{KXAMPLES.}

Note.-Let the pupil prove, in every case, that the roots will satisfy the third and fourth properties.
1. If the roots of an equation are 4 and -5 , what is the equation?
\[
\text { Ans. } x^{2}+x=20
\]
2. What is the equation when the roots are 1 and -3 ?
\[
\text { Ans. } x^{2}+2 x=3
\]
3. What is the equation when the roots are 9 and -10 ?
\[
\text { Ans. } x^{2}+x=90
\]
4. What is the equation whose roots are 6 and -10 ?
\[
\text { Ans. } x^{2}+4 x=60
\]
5. What is the equation whose roots are 4 and -3 ?
\[
\text { Ans. } x^{2}-x=12
\]
6. What is the equation whose roots are 10 and \(-r_{0}^{2}\) ?
\[
\text { Ans. } x^{2}-9 \frac{9}{10} x=1
\]
7. What is the equation whose roots are 8 and -2 ?
\[
\text { Ans. } x^{2}-6 x=16
\]
8. What is the equation whose roots are 16 and -5 ?
\[
\text { Ans. } x^{2}-11 x=80
\]
9. What is the equation whose roots are -4 and -5 ?
\[
\text { Ans. } x^{2}+9 x=-20
\]
10. What is the equation whose roots are -6 and -7 ?
\[
\text { Ans. } x^{2}+13 x=-42
\]
11. What is the equation whose roots are \(-\frac{3}{4}\) and -2 f
\[
\text { Ans. } x^{2}+2 \frac{3}{4} x=-\frac{3}{2}
\]
12. What is the equation whose roots are -2 and -3 ?
\[
\text { Ans. } x^{2}+5 x=-6
\]
13. What is the equation whose roots are 4 and 3 ?
\[
\text { Ans. } x^{2}-7 x=-12
\]
14. What is the equation whose roots are 12 and 2 ?
\[
A n s . x^{2}-14 x=-24
\]
15. What is the equation whose roots are 18 and 2 ?
\[
\text { Ans. } x^{2}-20 x=-36
\]
16. What is the equation whose roots are 14 ard 3 ?
\[
\text { Ans. } x^{2}-17 x=.-42 .
\]
17. What is the equation whose roots are \(\frac{4}{9}\) and \(-\frac{9}{4}\) ?
\[
\text { Ans. } x^{2}+\frac{65}{36} x=1,
\]
18. What is the equation whose roots are 5 and \(-\frac{2}{3}\) ?
\[
\text { Ans. } x^{2}-\frac{13}{3} x=\frac{10}{3} .
\]
19. What is the equation whose ronts are \(a\), and \(b\) ?
\[
\text { Ans. } x^{2}-(a+b) x=-a b
\]
20. What is the equation whose ronts are \(c\) and \(-d\) ?
\[
\text { Ans. } x^{2}-(c-d) x=c d .
\]
trinomial equations of the sEcond degree.
16.5. A trinomial equation of the second degree contains three kinds of terms:

1st. A term involving the unknown quantity to the second degree.

2d. A term involving the unknown quantity to the first degree ; and

3d. A knows term. Thus,
\[
x^{2}-4 x-12=0
\]
is a trinomial equation of the second degree.

\section*{FACTORING.}
165.* What are the factors of the trinomial equation,
\[
x^{2}-4 x-12=0 ?
\]

A trinomial equation of the second degree may always be reduced to one of the four forms (Art. 160), by simply transposing the known term to the second member, and then solving the equation. Thus, from the above equation, we have,
\[
x^{2}-4 x=12
\]

Resolving the equation, we find the two roots to be +6 and -2 ; therefore, the factors are, \(x-6\), and \(x+2\) (Art. 162).

Since the sum of the two roots is equal to the coefficient of the second term, taken with a contrary sign (Art. 163); and the product of the two roots is equal to the known term in the second member, taken with a contrary sign, or to the third term of the trinomial, taken with the same sign: hence it follows, that any trinomial may be factored by inspection, when two numbers can be discovered whose algebraic sum is equal to the coefficient of the second term, and whose product is equal to the third term.

\section*{EXAMPLES}
1. What are the factors of the trinomial, \(x^{2}-9 x=36\) ?

It is seen, by inspection, that -12 and +3 will fulfil the conditions of roots. For, \(12-3=9\); that is, the co. efficient of the second term with a contrary sign; and \(12 \times-3=-36\), the third term of the trinomial ; hence \({ }_{1}\) the factors are, \(x-12\), and \(x+3\).
2. What are the factors of \(x^{2}-7 x-30=0\) ?

Ans. \(x-10\), and \(x+3\)
3. What are the factors of \(x^{2}+15 x+36==0\) ?
\[
\text { Ans. } x+12, \text { and } x+3 .
\]
4. What are the factors of \(x^{2}-12 x-28=0\) ?
\[
\text { Ans. } x-14, \text { and } x+8
\]
5. What are the factors of \(x^{2}-7 x-8=0\) ?

Ans. \(x-8\), and \(x+1\).
trinomial equations of the form
\[
x^{2 n}+2 p x^{n}=q
\]

In the above equation, the exponent of \(x\), in the first term, is double the exponent of \(x\) in the second term.
\[
x^{6}-4 x^{3}=32, \text { and } x^{4}+4 x^{2}=117
\]
are both equations of this form, and may be solved by the rules already given for the solution of equations of the second degrec.

In the equation,
\[
x^{2 n}+2 p x^{n}=q
\]
we see that the first member will become a perfect square, by adding to it the square of half the coefficient of \(x^{n}\); thus,
\[
x^{2 n}+2 p x^{n}+p^{2}=q+p^{2}
\]
in which the first member is a perfect square. Then, extracting the square root of both members, we hare,
bence,
\[
\begin{aligned}
x^{n}+p & = \pm \sqrt{q+p^{2}} \\
x^{n} & =-p \pm \sqrt{q+p^{2}}
\end{aligned}
\]
then, by taking the \(n\)th root of both members,
and
\[
\begin{aligned}
& x^{\prime}=\sqrt[n]{-p+\sqrt{q+p^{2}}} \\
& x^{\prime \prime}=\sqrt[n]{-p-\sqrt{-p+p^{2}}}
\end{aligned}
\]

\section*{EXAMPLES.}
1. What are the values of \(x\) in the equation.
\[
x^{6}+6 x^{3}=112 ?
\]

Completing the square,
\[
x^{6}+6 x^{3}+9=112+9=121
\]
then, extracting the square root of both members,
\[
x^{3}+3= \pm \sqrt{121}= \pm 11 ; \text { hence }
\]
\[
x^{\prime}=\sqrt[3]{-3+11}, \text { and } x^{\prime \prime}=\sqrt[3]{-3-11} ; \text { hence, }
\]
\[
x^{\prime}=\sqrt[3]{8}=2, \quad \text { and } \quad x^{\prime \prime}=\sqrt[3]{-14}=-\sqrt[3]{14}
\]
2. What are the values of \(x\) in the equation,
\[
x^{4}-8 x^{2}=9 ?
\]

Completing the square, we have,
\[
x^{4}-8 x^{2}+16=9+16=25
\]

Extracting the square root of both members,
\[
\begin{gathered}
x^{2}-4= \pm \sqrt{25}= \pm 5 ; \text { hence, } \\
x^{\prime}= \pm \sqrt{4+5}, \text { and } x^{\prime \prime}= \pm \sqrt{4-5} ; \text { hence, } \\
x^{\prime}=+3 \text { and }-3 ; \text { and } x^{\prime \prime}= \pm \sqrt{-1} \text { and }-\sqrt{-1}
\end{gathered}
\]
3. What are the values of \(x\) in the equation,
\[
x^{6}+20 x^{3}=69 ?
\]

Completing the square,
\[
x^{6}+20 x^{3}+100=69+100=169
\]

Extracting the square root of both members,
\[
\begin{gathered}
x^{3}+10= \pm \sqrt{169}= \pm 13 ; \text { hence } \\
x^{\prime}=\sqrt[3]{-10+13}, \quad \text { and } \quad x^{\prime \prime}=\sqrt[3]{-10-13} \\
x^{\prime}=\sqrt[3]{3}, \quad \text { and } \quad x^{\prime \prime}=\sqrt[3]{-23}
\end{gathered}
\]
4. What are the values of \(x\) in the equation,
\[
x^{4}-2 x^{2}=3 ?
\]
\[
\text { Ans. } x^{\prime}= \pm \sqrt{3}, \text { and } x^{\prime \prime}= \pm \sqrt{-1}
\]
5. What are the values of \(x\) in the equation,
\[
\begin{aligned}
& x^{6}+8 x^{3}=9 ? \\
& \text { Ans. } x^{\prime}=1, \text { and } x^{\prime \prime}=\sqrt[3]{-9}
\end{aligned}
\]
6. Given \(x \pm \sqrt{9 x+4}=12\), to find \(x\).

Transposing \(x\) to the second member, and then squaring,
\[
\begin{gathered}
9 x+4=x^{2}-24 x+144 \\
\therefore \quad x^{2}-33 x=-140
\end{gathered}
\]
and, \(\quad x^{\prime}=28\), and \(x^{\prime \prime}=5\).
7. \(4 x \pm 4 \sqrt{x+2}=7 . \quad\) Ans. \(x^{\prime}=4 \frac{1}{4}, x^{\prime \prime}=\ddagger\).
8. \(x \pm \sqrt{5 x+10}=8 . \quad\) Ans. \(x^{\prime}=18, x^{\prime \prime}=3\).

\section*{NUMERICAL VALUES OF THE ROOTS.}
166. We have seen (Art. 160), that by attributing all possible signs to \(2 p\) and \(q\), we have the four following forms:
\[
\begin{align*}
& x^{2}+2 p x=q .  \tag{1.}\\
& x^{2}-2 p x=q  \tag{2.}\\
& x^{2}+2 p x=-q .  \tag{3.}\\
& x^{2}-2 p x=-q \tag{4.}
\end{align*}
\]

\footnotetext{
166. To how many forms may every equation of the second degree be reduced? What are they?
}

\section*{First Form.}

16\%. Since \(q\) is positive, we know, from Property Fourth, that the product of the roots must be negative hence, the roots have contrary signs. Since the soefficient \(2 p\) is positive, we know, from Property Third, that the algebraic sum of the roots is negative; hence, the negative root is numerically the greater.

\section*{Second Form.}
168. Since \(q\) is positive, the product of the roots must be negative; hence, the roots have contrary signs. Since \(2 p\) is negative, the algebraic sum of the roots must be positive; hence, the positive root is numerically the greater.

\section*{Third Form.}
169. Since \(q\) is negative, the product of the roots is positive (Property Fourth); hence, the roots have the same sign. Since \(2 p\) is positive, the sum of the roots must be negative; hence, both are negative.

\section*{Fourth Form.}
170. Since \(q\) is negative, the product of the roots is positive; hence, the roots have the same sign. Since \(2 p\) is negative, the sum of the roots is positive; hence, the roots are both positive.
167. What sign has the product of the roots in the first form? How aretheir signs? Which root is numerically the greater? Why?
168. What sign bas the product of the roots in the second form? How are the signs of the roots? Which root is numerically the greater?
169. What sign has the product of the roots in the third form? How sre their signs?
170. What sign has the product of the roots in the fourth form? How are the signs of the roots?

\section*{First and Second Forms.}
171. If we make \(q=0\), the first form becomes,
\[
x^{2}+2 p x=0, \text { or } x(x+2 p)=0 ;
\]
which shows that one root is equal to 0 , and the other to \(-2 p\).
Under the same supposition, the second form becomes,
\[
x^{2}-2 p x=0, \text { or } x(x-2 p)=0 \text {; }
\]
which shows that one root is equal to 0 , and the other to \(2 p\). Both of these results are as they should be; since, when \(q\), the product of the roots, becomes 0 , one of the factors must be 0 ; and hence, one root must be 0 .

\section*{Third and Fourth Forms.}
179. If, in the Third and Fourth Forms, \(q>p^{2}\), the quantity under the radical sign will become negative ; hence, its square root cannot be extracted (Art. 137). Under this supposition, the values of \(x\) are imaginary. How are these results to be interpreted?

If a given number be divideco into two parts, their product will be the greatest pössible, when the parts are equal.

Denote the number by \(2 p\), and the difference of the parts by \(d\); then,
\[
\begin{aligned}
& p+\frac{d}{2}
\end{aligned}=\text { the greater part, (Page 120.) }
\]
171. If we make \(q=0\), to what does the first form reduce? What, then, are its roots? Under the same supposition, to what does the second form reduce? What are, then, its roots?
172. If \(q>p^{2}\), in the third and fourth forms, what takes place?

If a number be divided into two parts, wien will the product be the greatest possible?

It is plain. that the product \(P\) will increase, as \(d\) dimin. \(i s h e s\), and that it will be the greatest possible when \(d=0\); for then there will be no negative quantity to be subtracted from \(p^{2}\), in the first member of the equation. But when \(d=0\), the parts are equal ; hence, the product of the two parts is the greatest when they are equal.

In the equations,
\[
x^{2}+2 p x=-q, \quad x^{2}-2 p x=-q
\]
\(2 p\) is the sum of the roots, and \(-q\) their product; and hence, by the principle just established, the product \(q\), can never be greater than \(p^{2}\). This condition fixes a limit to the value of \(q\). If, then, we make \(q>p^{2}\), we pass this limit, and express, by the equation, a condition which cannot be fulfilled; and this incompatibility of the conditions is made apparent by the values of \(x\) becoming imaginary. Hence, we conclude that,

When the values of the unknown quantity are imaginary, the conditions of the proposition are incompatible with each other.

\section*{EXAMPLES.}
1. Find two numbers, whose sum shall be 12 and product 46.

Let \(x\) and \(y\) be the numbers.
By the 1st condition, \(x+y=12\);
and by the \(2 d\),
\[
x y=46
\]

The first equation gives,
\[
x=12-y
\]

Substituting this value for \(x\) in the second, we have,
\[
12 y-y^{2}=46
\]
and changing the signs of the terms, we have,
\[
y^{2}-12 y=-46
\]

Then, by completing the square,
\[
y^{2}-12 y+36=-46+36=-10
\]
which gives, and.
\[
\begin{aligned}
& y^{\prime}=6+\sqrt{-10} \\
& y^{\prime \prime}=6-\sqrt{-10}
\end{aligned}
\]
both of which values are imaginary, as indeed they should le, since the conditions are incompatible.
2. The sum of two numbers is 8 , and their product 20 : what are the numbers?

Denote the numbers by \(x\) and \(y\).
By the first condition,
\[
x+y=8
\]
and by the second,
\[
x y=20
\]

The first equation gires,
\[
x=8-y
\]

Substituting this value of \(x\) in the second, we hare,
\[
8 y-y^{2}=20
\]
changing the signs, and completing the square, we have,
\[
y^{2}-8 y+16=-4
\]
and by extracting the root,
\[
y^{\prime}=4+\sqrt{-4}, \text { and } y^{\prime \prime}=4-\sqrt{-4}
\]

These values of \(y\) may be put under the forms (Art. 142),
\[
y=4+2 \sqrt{-1}, \text { and } y=4-2 \sqrt{-1}
\]

3 What are the values of \(x\) in the equation,
\[
\begin{aligned}
& x^{2}+2 x=-10 ? \\
& \text { Ans. }\left\{\begin{array}{l}
x^{\prime}=-1+3 \sqrt{-1} \\
x^{\prime \prime}=-1-3 \sqrt{-1}
\end{array}\right.
\end{aligned}
\]

\section*{PROBLEMS.}
1. Find a number such, that twice its square, added to three times the number, shall give 65.

Let \(x\) denote the unknown number. Then, the equation of the problem is,
\[
2 x^{2}+3 x=65 ;
\]
whence,
\[
x=-\frac{3}{4} \pm \sqrt{\frac{65}{2}+\frac{9}{16}}=-\frac{3}{4} \pm \frac{23}{4}
\]

Therefore,
\(x^{\prime}=-\frac{3}{4}+\frac{23}{4}=5, \quad\) and \(\quad x^{\prime \prime}=-\frac{3}{4}-\frac{23}{4}=-\frac{13}{2}\).
Both these values satisfy the equation of the problem. For,
\[
2 \times(5)^{2}+3 \times 5=2 \times 25+15=65
\]
and, \(\quad 2\left(-\frac{13}{2}\right)^{2}+3 \times-\frac{13}{2}=\frac{169}{2}-\frac{39}{2}=\frac{130}{2}=65\)
Notes.-1. If we restrict the enunciation of the problem to its arithmetical sense, in which "added" means numer\(i c a l\) increase, the first value of \(x\) only will satisfy the conditions of the problem.
2. If we give to "added," its algebraical signification (when it may mean subtraction as well as addition), the problem may be thus stated:

To find a number such, that twice its square diminished by three times the number, shall give 65 .

The second value of \(x\) will satisfy this enunciation; for,
\[
2\left(\frac{13}{2}\right)^{2}-3 \times \frac{13}{2}=\frac{169}{2}-\frac{39}{2}=65
\]
3. The root which results from giving the plus sign to the radical, is, generally, an answer to the question in its arithmetical sense. The second root generally satisfies the problem under a modified statement.

Thus, in the example, it was required to find a number, of which twice the square, added to three times the number, shall give 65. Now, in the arithmetical sense, added. means increased; but in the algebraic sense, it implies diminution when the quantity added is negative. In this sense, the second root satisfies the enunciation.
2. A certain person purchased a number of yards of eloth for 240 cents. If he had purchased 3 yards less of the same cloth for the same sum, it would have cost him 4 cents more per yard: how many yards did he buy?

Let \(x\) denote the number of yards purchased.
Then, \(\frac{240}{x}\) will denote the price per yard.
If, for 240 cents, he had purchased three yards less, that is. \(x-3\) yards, the price per yard, under this hypothesis, would have been denoted by \(\frac{240}{x-3}\). But, by the conditionk, this last cost must exceed the first by 4 cents. Therefore, we have the equation,
\[
\frac{240}{x-3}-\frac{240}{x}=4 ;
\]
whence, by reducing: \(\quad x^{2}-3 x=180\),
and, \(\quad x=\frac{3}{2} \pm \sqrt{\frac{9}{4}+180}=\frac{3 \pm 27}{2}\);
therefore, \(\quad x^{\prime}=15\), and \(x^{\prime \prime}=-12\).
Notes.-1. The value, \(x^{\prime}=15\), satisfies the enunciation in its arithmetical sense. For, if 15 yards cost 240 cente,
\(240 \div 15=16\) cents, the price of 1 yard; and \(240 \div 12=20\) conts, the price of 1 yard under the second supposition.
2. The second value of \(x\) is an answer to the following Problem:

A certain person purchased a number of yards of cloth for 240 cents. If he had paid the same for three yards more, it would have cost him 4 cents less per yard: how many yards did he buy?

This would give the equation of cundition,
\[
\begin{aligned}
\frac{240}{x}-\frac{240}{x+3} & =4 ; \text { or, } \\
x^{2}-3 x & =180 ;
\end{aligned}
\]
the same equation as found before ; hence,
A single equation will often state two or more arithmetical problems.

This arises from the fact that the language of Algebra is more comprehensive than that of Arithmetic.
3. A man having bought a horse, sold it for \(\$ 24\). At the sale he lost as much per cent. on the price of the horse, as the horse cost him dollars: what did he pay for the horse ?
Let \(x\) denote the number of dollars that he paid for the horse. Then, \(x-24\) will denote the loss he sustained. But ds he lost \(x\) per cent. by the sale, he must have lost \(\frac{x}{100}\) apon each dollar, and upon \(x\) dollars he lost a sum denoted by \(\frac{x^{2}}{100}\); we have, then, the equation,
\[
\frac{x^{2}}{100}=x-24 ; \text { whence, } x^{2}-100 x=-2400,
\]
and, \(\quad x=: 50 \pm \sqrt{2500-2400}=50 \pm 10\).
Therefure, \(\quad x^{\prime}=60\), and \(x^{\prime \prime}=40\).
Both of these roots will satisfy the problem.
For, if the man gave \(\$ 60\) for the horse, and sold him for \(\$ 24\), he lost \(\$ 36\). From the enunciation, he should have lost 60 per cent. of \(\$ 60\); that is,
\[
\frac{60}{100} \text { of } 60=\frac{60 \times 60}{100}=36 \text {; }
\]
cherefere, \(\$ 60\) satisfies the enunciation.
Had he paid \(\$ 40\) for the horse, he would have lost by the sale, \$16. From the enunciation, he should have lost 40 per cent. of \(\$ 40\); that is,
\[
\frac{40}{100} \text { of } 40=\frac{40 \times 40}{100} \doteq 16 ;
\]
therefore, \(\$ 40\) satisfies the enunciation.
4. The sum of two numbers is 11 , and the sum of their squares is 61 : what are the numbers? Ans. 5 and 6
5. The difference of two nambers is 3 , and the sum of their squares is 89 : what are the numbers? Ans. 5 and 8.
6. A grazier bought as many sheep as cost him \(£ 60\), and after reserving fifteen out of the number, he sold the remainder for £54, and gained 2s. a head on those he sold: how many did he buy? Ans. 75.
7. A merchant bought eloth, for which he paid \(£ 3315 \mathrm{~s}\), which he sold again at \(£ 28\) s. per piece, and gained by the i,argain as much as one piece cost him: how many pieces did he buy?

Ans. 15.
8. The difference of two numbers is 9 , and their sum, mnltuplied by the greater, is equal to 266: what are the numbers?

Ans. 14 and 5
9. To find a number, such that if you subtract it from 10 , and multiply the remainder by the number itself, the product will be 21 .

Ans. 7 or 3.
10. A person traveled 105 miles. If he had traveled 2 miles an hour slower, he would have been 6 hours longer in completing the same distance: how many miles did he travel per hour?

Ans. 7 miles.
11. A person purchased a number of sheep, for which he paid \(\$ 224\). Had he paid for each twice as much, plus 2 dollars, the number bought would have been denoted by twice what was paid for each : how many sheep were purchased?

Ans. 32.
12. The difference of two numbers is 7 , and their sum multiplied by the greater, is equal to 130 : what are the numbers?

Ans. 10 and 3.
13. Divide 100 into two such parts, that the sum of their squares shall be 5392 .

Ans. 64 and 36.
14. Two square courts are paved with stones a foot square; the larger court is 12 feet larger than the smaller one, and the number of stones in both pavements is 2120 : how long is the smaller pavement?

Ans. 26 feet.
15. Two hundred and forty dollars are equally distributed among a certain number of persons. The same sum is agaun distributed amongst a number greater by 4 . In the latter case each receives 10 dollars less than in the former: how many persons were there in each case. Ans. 8 and 12.
16. Two partners, \(A\) and \(B\), gained 360 dollars. \(A\) 's money was in trade 12 months, and he received, for principal and profit, 520 dollars. \(B\) 's money was 600 dollars, and was in trade 16 months: how much capital had \(A\) ?

Ans. 400 doilars.

EUUATIONS INTOLTING MこRE THAN ONE UNKNOWN QUANTITY.
173. Two simultancous equations, each of the second degree, and containing two unknown quantities, will, when combined, generally give rise to an equation of the fourth degree. Hence, only particular cases of such equations can be solved by the methods already given.

\section*{FIRST.}

Thoo simultuneous equations, involving two unknown quantities, can always be solved when one is of the first and the other of the second degree.

\section*{EXAMPLES.}
1. Given \(\left\{\begin{array}{l}x+y=14 \\ x^{2}+y^{2}=100\end{array}\right\}\) to find \(x\) and \(y\).

By transposing \(y\) in the first equation, we have,
\[
x=14-y ;
\]
and by squaring both members,
\[
x^{2}=196-28 y+y^{2}
\]

Substituting this value for \(x^{2}\) in the second equation, we have,
\[
196-28 y+y^{2}+y^{2}=100
\]
from which we have,
\[
y^{2}-14 y=-48
\]

By completing the square,
\[
y^{2}-14 y+49=1 ;
\]

\footnotetext{
173. When may two simultancous equations of the second degree be sorved ?
}
and by extracting the square root,
\[
y-7= \pm \sqrt{1}=+1, \text { and }-1 ;
\]
hence, \(y^{\prime}=7+1=8\), and \(y^{\prime \prime}=7-1=6\).
If we take the greater value, we find \(x=6\); and if we take the lesser, we find \(x=8\).
\[
\text { Ans. }\left\{\begin{array}{l}
x^{\prime}=8, \quad x^{\prime \prime}=6 \\
y^{\prime}=6, \quad y^{\prime \prime}=8
\end{array}\right.
\]

\section*{VERIFICATION.}

For the greater value, \(\dot{y}=8\), the equation,
\[
x+y=14, \text { gives } 6+8=14
\]
and, \(\quad x^{2}+y^{2}=100\), gives \(36+64=100\).
For the value \(y=6\), the equation,
\[
\begin{array}{ll}
x+y=14, \text { gives } 8+6=14 ; \\
\text { and, } & x^{2}+y^{2}=100, \text { gives } 64+36=100 .
\end{array}
\]

Hence, both sets of values satisfy the given equation.
2. Given \(\left\{\begin{array}{l}x-y=3 \\ x^{2}-y^{2}=45\end{array}\right\}\) to find \(x\) and \(y\).

Transposing \(y\) in the first equation, we have,
\[
x=3+y ;
\]
then, squaring both members,
\[
x^{2}=9+6 y+y^{2} .
\]

Substituting this value for \(x^{2}\), in the second equation, we have,
\[
9+6 y+y^{2}-y^{2}=45 ;
\]
whence, we have,
\[
6 y=36, \text { and } y=6
\]

Substituting this value of \(y\), in the first equation, we have,
\[
x-6=5,
\]
and, consequently, \(x^{\prime}=3+6=9\).

\section*{rerification.}
\[
\begin{aligned}
& x-y=3, \text { gives } 9-6=3 ; \\
& x^{2}-y^{2}=45, \text { gives } 81-36=45
\end{aligned}
\]
and,
Solve the following simultaneous equations:
3. \(\left\{\begin{array}{l}x+y=12 \\ x^{2}-y^{2}=24\end{array}\right\} \quad\) Ans. \(\left\{\begin{array}{l}x^{\prime}=7 . \\ y^{\prime}=7 .\end{array}\right.\)
4. \(\left\{\begin{array}{lr}x-y=3 \\ x^{2}+y^{2}=117\end{array}\right\} \quad\) Ans. \(\begin{cases}x^{\prime}=9, & x^{\prime \prime}=-6 . \\ y^{\prime}=6, & y^{\prime \prime}=-9 .\end{cases}\)
5. \(\left\{\begin{array}{l}x+y=9 \\ x^{2}-2 x y+y^{2}=1\end{array}\right\} \quad\) Ans. \(\begin{cases}x^{\prime}=5, & x^{\prime \prime}=5 . \\ y^{\prime}=4, & y^{\prime \prime}=4 .\end{cases}\)
6. \(\left\{\begin{array}{l}x-y=5 \\ x^{2}+2 x y+y^{2}=225\end{array}\right\}\)
\[
\text { Ans. }\left\{\begin{array}{l}
x^{\prime}=10, x^{\prime \prime}=-5 \\
y^{\prime}=5, y^{\prime \prime}=-10
\end{array}\right.
\]

\section*{SECOND.}
184. Two simultaneous equations of the second derree, which are homogeneous with respect to the unknown quan. tity, can alucays be solved.
EXAMPLES.
1. Given \(\left\{\begin{array}{l}x^{2}+3 x y=22 \\ x^{2}+3 x y+2 y^{2}=40 \text {. }\end{array}\right.\)
to find \(x\) and \(y\).
174. When may two simultaleurs eqrations of the second degree be solved ?

Assume \(x=t y, t\) being any auxiliary unknown quantity. Substituting this value of \(x\) in Equations (1) and (2), we have,
\[
\begin{equation*}
t^{2} y^{2}+3 t y^{2}=22, \quad \therefore \quad y^{2}=\frac{22}{t^{2}+3 t} \tag{3.}
\end{equation*}
\]
\(t^{2} y^{2}+3 t y^{2}+2 y^{2}=40, \quad \therefore \quad y^{2}=\frac{40}{t^{2}+3 t+9}\),
hence, \(\quad \frac{22}{t^{2}+3 t}=\frac{40}{t^{2}+3 t+2}\);
hence, \(\quad 22 t^{2}+66 t+44=40 t^{2}+120 t ;\)
reducing,
\[
t^{2}+3 t=\frac{22}{9}
\]
whence, \(\quad t^{\prime}=\frac{2}{3}\), and \(t^{\prime \prime}=-\frac{11}{3}\).
Substituting either of these values in Equations (3) or (4), we find,
\[
y^{\prime}=+3, \text { and } y^{\prime \prime}=-3
\]

Substituting the plus value of \(y\), in Equation (1), we have,
\[
x^{2}+9 x=22
\]
from which we find,
\[
x^{\prime}=+2, \text { and } x^{\prime \prime}=-11
\]

If we take the negative value, \(y^{\prime \prime}=-3\), we have, from Equation (1),
\[
x^{2}-9 x=22
\]
from which we find,
\[
x^{\prime}=+11, \text { and } x^{\prime \prime}=-2
\]

\section*{VERIFICATION.}

For the values \(y^{\prime}=+3\), and \(x^{\prime}=+2\), the given equation,
\[
x^{2}+3 x y=22
\]
gives, \(\quad 2^{2}+3 \times 2 \times 3=4+18=22\);
and for the second value, \(x^{\prime \prime}=-11\), the same equation,
\[
x^{2}+3 x y=22,
\]
gives, \((-11)^{2}+3 \times-11 \times 3=12 i-99=22\).
If, now, we take the second value of \(y\), that is, \(y^{\prime \prime}=-3\), and the corresponding values of \(x\), viz., \(x^{\prime}=+11\), and \(x^{\prime \prime}=-2\); for \(x^{\prime}=+11\), the given equation,
\[
x^{2}+3 x y=22
\]
gives, \(\quad 11^{2}+3 \times 11 \times-3=121-99=22\);
and for \(x^{\prime \prime}=-2\), the same equation,
\[
x^{2}+3 x y=22
\]
gives, \((-2)^{2}+3 \times-2 \times-3=4+18=22\).
The verifications could be made in the same way by em. ploying Equation (2).

Note.-In equations similar to the above, we generally find but a single pair of values, corresponding to the values in this equation, of \(y^{\prime}=+3\), and \(x^{\prime}=+2\).

The complete solution would give four pairs of valnes.
2. \(\left\{\begin{array}{l}x^{2}-y^{2}=-9 \\ y^{2}-x y=5\end{array}\right\} \quad\) Ans. \(\left\{\begin{array}{l}x=4 . \\ y=5 .\end{array}\right.\)
3. \(\left\{\begin{array}{l}x y-y^{2}=-7 \\ y^{2}+x^{2}=85\end{array}\right\}\)

Ans. \(\left\{\begin{array}{l}x=6 . \\ y=7 .\end{array}\right.\)
\(4\left\{\begin{array}{l}2 x^{2}+3 x y=470 \\ y^{2}-x y=-9\end{array}\right\}\)
Ans. \(\left\{\begin{array}{l}x=10 . \\ y=9\end{array}\right.\)
5. \(\left\{\begin{array}{l}5 x y-3 y^{2}=32 \\ x^{2}+y^{2}+3 x y=71\end{array}\right\}\)

Ains. \(\left\{\begin{array}{l}x=7 . \\ y=1 .\end{array}\right.\)

\section*{THIRD.-PARTICULAR CASES.}

175 Many other equations of the second degree may be so transformed, as to be brought under the rules of solution already given. The seven following formulas will aid in such transformation.
- When the sum and difference are known:
\[
\begin{aligned}
& x+y=s \\
& x-y=d
\end{aligned}
\]

Then, page 132, Example 3,
\[
\begin{equation*}
x=\frac{s+d}{2}=\frac{1}{2} s+\frac{1}{2} d, \quad \text { and } \quad y=\frac{s-d}{2}=\frac{1}{2} s-\frac{1}{2} d \tag{2.}
\end{equation*}
\]

When the sum and product are known:
\[
\begin{align*}
x+y & =s \\
x y & =p  \tag{2.}\\
x^{2}+2 x y+y^{2} & \left.=s^{2}, \text { by squaring ( } 1\right) \\
& =4 p, \text { by mult. ( } 2) \text { by } 4 . \\
4 x y & \frac{s^{2}}{x^{2}-2 x y+y^{2}} \\
x-y & = \pm \sqrt{s^{2}-4 p}, \text { by subtraction. } \\
x+y & =s \\
x & =\frac{s}{2} \pm \frac{1}{2} \sqrt{s^{2}-4 p} \\
y & =\frac{s}{2} \mp \frac{1}{2} \sqrt{s^{2}-4 p}
\end{align*}
\]

But,
bence
and,
175. What is the first formula of this article? What the second? Third? Fourth? Fifth? Sixtr? Seventh?

When the difference and product are known:
\[
\begin{align*}
& x-y=d . \\
& x y^{\circ}=p . \\
& x^{2}-2 x y+y^{2}=d^{2}, \text { by squaring (1). } \\
& 4 x y=4 p \text {, mult. (2) by } 4 . \\
& \overline{x^{2}+2 x y+y^{2}}=\overline{d^{2}}+4 p, \text { by adding. } \\
& x+y= \pm \sqrt{ } d^{2}+4 p \\
& \begin{aligned}
x-y & =\frac{d}{x}=\frac{1}{2} d \pm \frac{1}{2} \sqrt{d^{2}+4 p}
\end{aligned} \\
& y=-\frac{1}{2} d \pm \frac{1}{2} \sqrt{d^{2}+4 l} \text {. }
\end{align*}
\]

When the sum of the squares and product are known . \(x^{2}+y^{2}=3\). (1.) \(x y=p \ldots\) (2.) \(\quad \therefore 2 x y=2 p \ldots\) (3.)

Adding ( 1 ) and (3), \(x^{2}+2 x y+y^{2}=s+2 p\); hence,
\[
\begin{equation*}
x+y= \pm \sqrt{s+2 p} \tag{4.}
\end{equation*}
\]

Subtracting (3) from (1), \(x^{2}-2 x y+y^{2}=s-2 p\); hence,
\[
\begin{equation*}
x-y= \pm \sqrt{s-2 p} \tag{5.}
\end{equation*}
\]

Combining (4) and (5), \(x=\frac{1}{2} \sqrt{s+2 p}+\frac{1}{2} \sqrt{s-2 p_{s}}\) and,
\[
y=\frac{1}{1} \sqrt{s+2 p}-\frac{1}{2} \sqrt{s-2 p}
\]
(5.)

When the sum and sum of the squares are known:
\[
\begin{align*}
x+y & =s \quad . \quad . \quad . \quad(1 .) \\
x^{2}+y^{2} & =s^{\prime} \quad \text {. . . . (2.) }  \tag{2.}\\
x^{2}+2 x y+y^{2} & =s^{2} \quad \text { by squaring (1) } \\
\hline 2 x y & =s^{2}-s^{\prime} \\
\hdashline y & =\frac{s^{2}-s^{\prime}}{2}=p . \quad \text { (3.) } \tag{3.}
\end{align*}
\]

By putting \(x y=p\), and combining Equations (1) and (3), by Formula (2), we find the values of \(x\) and \(y\).

When the sum and sum of the cubes are known:
\[
\begin{align*}
& x+y=8  \tag{1.}\\
& x^{3}+y^{3}=152 \quad  \tag{2.}\\
& \quad \text {. . . . . (1.) } \\
& x^{3}+3 x^{2} y+3 x y^{2}+y^{3}=512 \quad \text { by cubing (1). } \\
& \hline 3 x^{2} y+3 x y^{2}=360 \quad \text { by subtraction. } \\
& 3 x y(x+y)=360 \quad \text { by factoring. } \\
& 3 x y(8)=360 \quad \text { from Equa. (1) } \\
& 24 x y=360  \tag{3.}\\
& x y=15 \quad \text {..... (3.) }
\end{align*}
\]
hence,
Combining (1) and (3), we find \(x=5\) and \(y=3\).
( \%.)

When we have an equation of the form,
\[
(x+y)^{2}+(x+y)=q
\]

Let us assume \(x+y=z\).
Then the given equation becomes,
\[
\begin{gathered}
z^{2}+z=q ; \text { and } z=-\frac{1}{2} \pm \sqrt{q+\frac{1}{4}} \\
x+y=-\frac{1}{2} \pm \sqrt{q+\frac{1}{4}}
\end{gathered}
\]

\section*{EXAMPLES.}
1. Given \(\left\{\begin{aligned} x z=y^{2} & \text { (1) } \\ x+y+z=7 & \text { (2) } \\ x+y^{2}+z^{2}=21 & \text { (3) }\end{aligned}\right\}\) to find \(x, y\), and \(z\).

Transposing \(y\) in Equation (2), we have,
\[
x+z=7-y ; \quad \text { • . . (4.) }
\]
then, squaring the members, we have,
\[
x^{2}+2 x z+z^{2}=49-14 y+y^{2}
\]

If now we substitute for \(2 x z\), its value taken from Equa lion (1), we have,
\[
x^{2}+2 y^{2}+z^{2}=49-14 y+y^{2}
\]
and cancelling \(y^{2}\), in each member, there results,
\[
x^{2}+y^{2}+z^{2}=49-14 y
\]

But, from Equation (3), we see that each member of the last equation is equal to 21 ; hence,
\[
49-14 y=21
\]
and,
\[
14 y=49-21=28
\]
hence,
\[
y=\frac{28}{14}=2
\]

Substituting this value of \(y\) in Equation (1), gives,
\[
x z=4 ;
\]
and substitutng it in Equation (4), gives,
\[
x+z=5, \text { or } x=5-z
\]

Substituting this value of \(x\), in the previons equation, we obtain
\[
5 z-z^{2}=4, \text { or } z^{2}-5 z=-4
\]
and by completing the square, we have,
\[
z^{2}-5 z+6.25=2.25
\]
and, \(z-2.5= \pm \sqrt{2.2} 5=+1.5\), or -1.5 hence, \(z=2.5+1.5=4\), and \(z=+2.5-1.5=1\)
\(\left.\begin{array}{rl}\text { 2. Given } & x+\sqrt{x y}+y=19 \\ \text { and } x^{2}+x y+y^{2}=133\end{array}\right\}\) to find \(x\) and \(y\).
Dividing the second equation by the first, we have,
but,
hence, by addition,
\[
\begin{aligned}
x-\sqrt{x y}+y & =7 \\
x+\sqrt{x y}+y & =19 \\
\hline 2 x+2 y & =26 \\
x+y & =13
\end{aligned}
\]
and substituting in 1st Equa., \(\sqrt{x y}+13=19\)
or, by transposing,
and by squaring,
\[
x y=36
\]

Equation 2d, is
\[
x^{2}+x y+y^{2}=133
\]
and from the last, we have,
"Subtracting,
\[
\frac{3 x y}{x^{2}-2 x y+y^{2}}=\frac{108}{25}
\]
hence,
\[
x-y= \pm 5
\]
but,
\[
\sqrt{x y}=6
\]
\[
x+y=13
\]
hence, \(x=9\) and \(4 ;\) and \(y=4\) and 9 .

\section*{PROBLEMS.}
1. Find two numbers, such that their sum shall bo 15 and the sum of their squares 113.

Let \(x\) and \(y\) denote the numbers; then,
\[
\begin{equation*}
x+y=15, \quad(1 .) \quad \text { and } \quad x^{2}+y^{2}=113 \tag{2.}
\end{equation*}
\]

From Equation (1), we have,
\[
x^{2}=225-30 y+y^{2}
\]

Substituting this value in Equation (2),
\[
225-30 y+y^{2}+y^{2}=113
\]
hence,
\[
\begin{aligned}
2 y^{2}-30 y & =-112 \\
y^{2}-15 y & =-56
\end{aligned}
\]
hence,
\[
y^{\prime}=8, \quad \text { and } \quad y^{\prime \prime}=7
\]

The first value of \(y\) being substituted in Equation ( 1\()_{z}\) gives \(x^{\prime}=7\); and the second, \(x^{\prime \prime}=8\). Hence, the numbers are 7 and 8 .
2. To find two numbers, such that their product added to their sum shall be 17, and their sum taken from the sum of their squares shall leave 22.

Let \(x\) and \(y\) denote the numbers; then, from the conditions,
\[
\begin{align*}
(x+y)+x y & =17  \tag{1.}\\
x^{2}+y^{2}-(x+y) & =22 \tag{2.}
\end{align*}
\]

Multiplying Equation (1) by 2, we have,
\[
\begin{equation*}
2 x y+2(x+y)=34 \tag{3.}
\end{equation*}
\]

Adding (2) and (3), we have,
hence,
\[
x^{2}+2 x y+y^{2}+(x+y)=56 ;
\]
\[
\begin{equation*}
(x+y)^{2}+(x+y)=56 \tag{4.}
\end{equation*}
\]

Regarding \((x+y)\) as a single unknown quantity (page 248),
\[
x+y=-\frac{1}{2} \pm \sqrt{56+\frac{1}{4}}=7
\]

Snbstituting this value in Equation (1), we have,
\[
7+x y=17, \quad \text { and } \quad y=5
\]

Herce, the numbers are 2 and 5.
3. What two numbers are those whose sum is 8 , and sum of their squares 34 ? Ans. 5 and 3.
4. It is required to find two such numbers, that the first shall be to the second as the second is to 16 , and the sum of whose squares shall be 225 ?

Ans. 9 and 12 ,
5. What two numbers are those which are to each othes as 3 to 5 , and whose squares added together make 1666 ? Ans. 21 and 35.
6. There are two numbers whose difference is 7 , and half their product plus 30 is equal to the square of the less number: what are the numbers?

Ans. 12 and 19.
7. What twn numbers are those whose sum is 5 , and the sum of their cubes 35 ?

Ans. 2 and 3.
8. What two numbers are those whose sum is to the greater as 11 to 7 , and the difference of whose squares is 132?

Ans. 14 and 8.
9. Divide the number 100 into two such parts, that the product may be to the sum of their squares as 6 to 13 .

Ans. 40 and 60
10. Two persons, \(A\) and \(B\), departed from different places at the same time, and traveled towards each other. On meeting, it appeared that \(A\) had traveled 18 miles more than \(B\); and that \(A\) could have gone \(B^{\prime} s\) journey in \(15 \frac{3}{4}\) days, but \(B\) would have been 28 days in performing \(A\) 's journey : how far did each travel? Ans. \(\left\{\begin{array}{l}A, 72 \text { miles. } \\ B, 54 \text { miles. }\end{array}\right.\)
11. There are two numbers whose difference is 15 , and half their product is equal to the cube of the lesser number: what are those numbers?

Ans. 3 and 18.
12. What two numbers are those whose sum, multiplied by the greater, is equal to 77 ; and whose difference, multiplied by the less, is equal to 12 ?
\[
\text { Ans. } 4 \text { and } 7 \text {, or } \frac{3}{2} \sqrt{2} \text { and } \frac{1}{2} \sqrt{2} \text {. }
\]
13. Divide 100 into two such parts, that the sum of their square roots may be 14.

Ans. 64 and 36.
14. It is required to divide the number 24 into two such parts, that their product may be equal to 35 times their dif. ference.

Ans. 10 and 14,
15. The sum of two numbers is 8 , and the sum of their cubes is 152 : what are the numbers? Ans. 3 and 5.
16. Two merchants each sold the same kind of stuff; the second sold 3 yards more of it than the first, and together they receive 35 dollars. The first said to the second, "I would have received 24 dollars for your stuff;" the other replied, "And I should have received \(12 \frac{1}{3}\) dollars for yours:" how many yards did each of them sell?
\[
\text { Ans. }\left\{\begin{array}{l}
\text { 1st merchant } x^{\prime}=15, \\
2 \mathrm{~d} \quad \text { " } y^{\prime}=18,
\end{array} \text { or, } \begin{array}{l}
x^{\prime \prime}=5 . \\
y^{\prime \prime}=8
\end{array}\right.
\]
17. A widow possessed 13,000 dollars, which she divided into two parts, and placed them at interest in such a manner that the incomes from them were equal. If she had put out the first portion at the same rate as the second, she would have drawn for this part 360 dollars interest; and if she had placed the second out at the same rate as the first, she would have drawn for it 490 dollars interest: what were the two rates of interest?

Ans. 7 and 6 per cent.
18. Find three numbers, such that the difference between the third and second shall exceed the difference between the second and first by 6 ; that the sum of the numbers shall be 33 , and the sum of their squares 467.

Ans. 5, 9, and 19.
19. What number is that which, being divided by the product of its two digits, the quotient will be 3 ; and if 18 be added to it, the resulting number will be expressed by the digits inverted?

Ans. 24.
20. What tro numbers are those which are to each other as \(m\) to \(n\), and the sum of whose squares is \(b\) ?
\[
\text { Ans. } \frac{m \sqrt{b}}{\sqrt{m^{2}+n^{2}}}, \frac{n \sqrt{b}}{\sqrt{m^{2}}+n^{2}}
\]
21. What two numbers are those which are to each other as \(m\) to \(n\), and the difference of whose squares is \(b\) ?
\[
\text { Ans. } \frac{m \sqrt{b}}{\sqrt{m^{2}-n^{2}}}, \frac{n \sqrt{b}}{\sqrt{m^{2}-n^{2}}} .
\]
22. Required to find three numbers, such that the product of the first and second shall be equal to 2 ; the product of the first and third equal to 4 , and the sum of the squares of the second and third equal to \(20 . \quad\) Ans. 1, 2, and 4.
23. It is requàred to find three numbers, whose sum shall be 38 , the sum of their squares 634 , and the difference between the second and first greater by 7 than the difference between the third and second.

Ans. 3, 15, and 20.
24. Required to find three numbers, such that the product of the first and second shall be equal to \(a\); the product of the first and third equal to \(b\); and the sum of the squares of the second and third equal to \(c\).
\[
\text { Ans. }\left\{\begin{array}{l}
x=\sqrt{\frac{a^{2}+b^{2}}{c}} \\
y=a \sqrt{\frac{c}{a^{2}+b^{2}}} \\
z=b \sqrt{\frac{c}{a^{2}+b^{2}}}
\end{array}\right.
\]
25. What two numbers are those, whose sum, multiplied by the greater, gives 144 ; and whose difference, multiplied by the less, gives 14 ?

Ans. 9 and 7.

\section*{CHAPTER LX.}

OI PROPORTIONS AND PIROGRESSIONG。
176. Two quantities of the same kind may be compared, the one with the other, in two ways:
1st. By considering how much one is greater or less than the other, which is shown by their difference; and,
2d. By considering how many times one is greater or less than the other, which is shown by their quotient.
Thus, in comparing the numbers 3 and 12 together, with respect to their difference, we find that 12 exceeds 3 , by 9 ; and in comparing them together with respect to their quotient, we find that 12 contains 3 , four times, or that 12 is 4 times as great as 3.

The first of these methods of comparison is called Arith. metical Proportion, and the second, Geometrical Proportion.

Hence, Arithmetical Proportion considers the relation of quantities with respect to their difference, and Geometrical Proportion the relation of quantities with respect to their quotient.
176. In how many ways may two quantities be compared the one with the other? What does the first method consider? What the secon l? What is the first of these methods called? What is the second called? How then do you define the two proportions?

\section*{OF ARITHMETICAL PROPORTION AND PROGRESSION.}

17\%. If we have four numbers, \(2,4,8\), and 10 , of which the difference between the first and second is equal to the difference between the third and fourth, these numbers are said to be in arithmetical proportion. The first term? is called an antecedent, and the second term 4, with which it is compared, a consequent. The number 8 is also called an antecedent, and the number 10 , with which it is com: pared, a consequent.

When the difference between the first and second is equal to the difference between the third and fourth, the four numbers are said to be in proportion. Thus, the rumbers,
\[
2, \quad 4, \quad 8, \quad 10,
\]
are in arithmetical proportion.
178. When the difference between the first antecedent and consequent is the same as between any two consecutive terms of the proportion, the proportion is called an arithmetical progression. Hence, a progression by differences, or an arithmetical progression, is a series in which the successive terms are continually increased or decreased by a constant number, which is called the common difference of the progression.

Thus, in the two series,
\begin{tabular}{ccccccccc}
1, & 4, & 7, & 10, & 13, & 16, & 19, & 22, & 25,
\end{tabular}\(\ldots\)

\footnotetext{
177. When are four numbers in arithmetical proportion? What is the first called? What is the second called? What is the third called? What is the fourth called?
178. What is an arithmetical progression? What is the number called by which the terms are increased or diminished? What is an increasing progression? What is a decreasing progression? Which term is only an antecedent? Which ouly a consequent?
}
the first is called an increasing progression, of which the common difference is 3 , and the second, a decreasing progression, of which the common difference is 4.

In general, let \(a, b, c, d, e, f, \ldots\) denote the terms of a progression by differences; it has been agreed to write them thus:
\[
a \cdot b \cdot c \cdot d \cdot e \cdot f \cdot g \cdot h \cdot i \cdot k \ldots
\]

This series is read, \(a\) is to \(b\), as \(b\) is to \(c\), as \(c\) is to \(d\), as \(d\) is to \(e, \mathbb{E c}\). This is a series of continued equi-differences, in which each term is at the same time an antecedent and a consequent, with the exception of the first term, which is only an antecedent, and the last, which is only a conscquent.
179. Let \(d\) denote the common difference of the progresion,
\[
a \cdot b \cdot c \cdot e \cdot f \cdot g \cdot h . \& c
\]
which we will consider increasing.
From the definition of the progression, it evidently fol lows that,
\(b=a+d, c=b+d=a+2 d, \quad e=c+d=a+3 d ;\)
and, in general, any term of the series is equal to the first term, plus as many times the common difference as there are preceding terms.

Thus, let \(l\) be any term, and \(n\) the number which marks the place of it ; the expression for this general term is,
\[
l=a+(n-1) d
\]

Hence, for finding the last term, we have the following
179. Give the rule for finding the last term of a series wher the progression is increasing.
1. Multiply the commond difference oy the rumber of termis less one:
II. To the product atd the first term ; the sum will be the last term.
EXAMPLES.

The formula,
\[
l=a+(n-1) d
\]
serves to find any term whatever, without determining all those which precede it.
1. If we make \(n=1\), we have, \(l=a\); that is, the series will have but one term.
2. If we make \(n=2\), we have, \(l=a+d\); that is, the series will have two terms, and the second term is equal to the first, plus the common difference.
3. If \(a=3\), and \(d=2\), what is the 3 d term? Ans. 7.
4. If \(a=5\), and \(d=4\), what is the 6 th term?

Ans. 25
5. If \(a=7\), and \(d=5\), what is the 9 th term?

Ans. 47.
6. If \(a=8\), and \(d=5\), what is the 10 th term?

Ans. 53
7. If \(a=20\), and \(d=4\), what is the 12 th term? Ars. 64.
8. If \(a=40\), and \(d=20\), what is the 50 th term? Ans. 1020.
9. If \(a=45\), and \(d=30\), what is the 40 th term? Ans. 1215.
10. If \(a=30\), and \(d=20\), what is the 60th.term?

Ans. 1210.
11. If \(a=50\), and \(d=10\), what is the 100th termì? Ans. \(10: 40\).
12. To find the 50th term of the progression,
\[
1.4 \cdot 7 \cdot 10.13 .16 \cdot 19 \ldots
\]
re have,
\[
l=1+49 \times 3=148 .
\]
13. To find the 60th term of the progression,
we have, 1.5.9.13.17.21.25...
\[
l=1+59 \times 4=237 .
\]
180. If the progression were a decreasing one, we should have,
\[
l=a-(n-1) \cdot l .
\]

Hence, to find the last term of a decreasing progression, we have the following

\section*{RULE.}
I. Multiply the common difference by the number of terms less one:
II. Subtract the product from the first term; the romainder woill be the last term.

\section*{EXAMPLES.}
1. The first term of a decreasing progression is 60 , the number of terms 20 , and the common difference \(3:\) what is the last term?
\(l=a-(n-1) d\), gives \(l=60-(20-1) 3=60-57=8\)
180. Give the rule for finding the last term of a series, when the progreasion is decreasing.
2. The first term is 90 , the common difference 4 , and the number of terms 15 : what is the last term? Ans. 34.
3. The first term is 100 , the number of terms 40 , and the common difference 2: what is the last term? Ans. 22.
4. The first term is 80 , the number of terms 10 , and the common difference 4 : what is the last term? Ans. 44.
5. The first term is 600 , the number of terms 100 , and the common difference 5 : what is the last term?

Ans. 105.
6. The first term is 800 , the number of terms 200 , and the common difference 2 : what is the last term?

Ans. 402.
181. A progression by differences being given, it is pro. posed to prove that, the sum of any two terms, taken at equal distances from the two extremes, is equal to the sum of the two extremes.

That is, if we have the progression,
\[
2 \cdot 4 \cdot 6 \cdot 8 \cdot 10 \cdot 12
\]
we wish to prove generally, that,
\[
4+10, \text { or } 6+8
\]
is equal to the sum of the two extremes, 2 and 12.
Let \(a . b . c . e . f \ldots i, k . l\), be the proposed progression, and \(n\) the number of terms.

We will first observe that, if \(x\) denotes a term which has \(p\) terms before 1 , and \(y\) a term which has \(p\) terms after it, we have, from what has been said,

\footnotetext{
181. In every progression by differences, what is the sum of the two extremes equal to? What is the rule for finding the sum of an arith. metical series?
}
and,
\[
x=a+p \times d
\]
whence, by addition, \(x+y=a+l\),
which proves the proposition.
Referring to the previous example, if we suppose, in the first place, \(x\) to denote the second term 4, then \(y\) will denote the term 10 , next to the last. If \(x\) denotes the third term 6 , then \(y\) will denote 8 , the third term from the last.

To apply this principle in finding the sum of the terms of a progression, write the terms, as below, and then again, in an inverse order, viz. :
\[
\begin{aligned}
& a \cdot b \cdot c \cdot d \cdot e \cdot f \ldots i \cdot k \cdot l \\
& l \cdot k \cdot i \cdot \ldots
\end{aligned}
\]

Calling \(S\) the sum of the terms of the first progression, \(2 S\) will be the sum of the terms of both progressions, and we shall have, \(2 S=(a+l)+(b+k)+(c+i) \cdots+(i+c)+(k+b)+(l+a)\).

Now, since all the parts, \(a+l, b+k, c+i \ldots\) are equal to each other, and their number equal to \(n\),
\[
2 S=(a+l) \times n, \quad \text { or } \quad S=\left(\frac{a+l}{2}\right) \times n
\]

Hence, for finding the sum of an arithmetical series, wo have the following

\section*{RULE.}
I. Add the two extremes together, and take half their sum:
II. Multiply this half-sum by the number of terms; the product will be the sum of the series.

\section*{EXAMPLES.}
1. The extremes are 2 and 16 , and the number of terms 8: what is the sum of the series?
\[
S=\left(\frac{a+l}{2}\right) \times m, \text { gives } S=\frac{2+16}{2} \times 8=72
\]
2. The extremes are 3 and 27 , and the number of terms 12: what is the sum of the series?

Ans. 180.
3. The extremes are 4 and 20 , and the number of terms 10: what is the sum of the series?

Ans. 120.
4. The extremes are 100 and 200 , and the number of terms 80: what is the sum of the series \(\% \quad\) Ans. 12000.
5. The extremes are 500 and 60 , and the number of terms 20 : what is the sum of the series?

Ans. 5600
6. The extremes are 800 and 1200 , and the number of terms 50 : what is the sum of the series? Ans. 50000.
182. In arithmetical proportion there are five members to be considered:

1st. The first term, \(a\).
2 d . The common difference, \(d\).
3d. The number of terms, \(n\).
4th. The last term, \(l\).
5th. The sum, \(S\).
The formulas,
\[
l=a+(n-1) d, \quad \text { and } \quad S=\left(\frac{a+l}{2}\right) \times n
\]
contain five quantities, \(a, d, n, l\), and \(S\), and consequently give rise to the following general problem, viz. : Any thres

\footnotetext{
182. How many numbers are considered in arithmetical proportion? What are they? In every arithmetical progression, what is the common difference equal to?
}
of these five quantities being given, to determine the other tion.

We already know the value of \(S\) in terms of \(a, n\), and \(\zeta\) From the formula,
\[
l=a+(n-1) d,
\]
\[
\text { we find, } \quad a=l-(n-i) d .
\]

That is: The first term of an increasing arithmetical progression is equal to the last term, minus the product of the common difference by the number of terms less one.

From the same formula, we also find,
\[
a=\frac{l-a}{n-1} .
\]

That is: In any arithmetical progression, the common dif. ference is equal to the last term, minus the first term, divided by the number of terms less one.
The last term is 16 , the first term \(\dot{4}\), and the number of terms 5 : what is the common difference?

The formula,
\[
a=\frac{l-a}{n-1}
\]
gives,
\[
d=\frac{16-4}{4}=3 .
\]
2. The last term is 22 , the first term 4 , and the number of terms 10 : what is the common difference? Ans. 2.
183. The last principle affords a solution to the folluw. ing question:

To find a number mof arithmetical means betwoen two given numbers a and b .
153. How do you find any number of arithmetical means betwees twc glven numbers?

To resolve this question, it is first necessary to find the common difference. Now, we may regard \(a\) as the first term of an arithmetical progression, \(b\) as the last term, and the required means as intermediate terms. The number of terms of this progression will be expressed by \(m+2\).

Now, by substituting in the above formula, \(b\) for \(l\), and \(m_{2}+2\) for \(n\), it becomes,
\[
a=\frac{b-a}{m+2}=\frac{b-a}{m+1}
\]
that is: The common difference of the required progression is obtained by dividing the difference between the given numbers, a and b , by the required number of means plus one.

Having obtained the common difference, \(d\), form the second term of the progression, or the first arithmetical mean, by adding \(d\) to the filst term \(a\). The second mean is obtained by augmenting the first mean by \(d, \& c\).
1. Find three arithmetical means between the extremes 2 and 18.

The formula, \(\quad d=\frac{b-a}{m+1}\),
gives, \(\quad d=\frac{18-2}{4}=4\);
hence, the progression is,
\[
2 \cdot 6 \cdot 10 \cdot 14 \cdot 18 .
\]
2. Find twelve arithmetical means between 12 and 77.

The formula,
\[
\begin{gathered}
d=\frac{b-a}{m+1} \\
d=\frac{77-12}{13}=5 ;
\end{gathered}
\]
gires,
hence, the progression is,
\[
12.17 \cdot 22.27 \text {. . } 77
\]
184. Remark.-If the same number of arithmetical means are inserted between all the terms, taken two and two, these terms, and the arithmetical means united, will form one and the same progression.

For, let \(a . b . c . e . f \ldots\) be the proposed progression and \(m\) the number of means to be inserted between \(a\) and \(b, b\) and \(c, c\) and \(e \ldots .\).

From what has just been said, the common difference of each partial progression will be expressed by
\[
\frac{b-a}{m+1}, \quad \frac{c-b}{m+1}, \frac{e-c}{m+1} \ldots
\]
expressions which are equal to each other, sincen \(a, b, c \ldots\) are in progression; therefore, the common difference is the same in each of the partial progressions; and, since the last term of the first forms the first term of the second, de.., we may conclude, that all of these partial progressions form a single progression.

\section*{EXAMPLES.}
1. Find the sum of the first fifty terms of the progression 2.9.16.23...

For the 50th term, we have,
\[
l=2+49 \times 7=345 .
\]

Hence, \(S=(2+345) \times \frac{50}{2}=347 \times 25=8675\).
2. Find the 100 th term of the series 2 . 9.16 . 23 ... Ans. 695
3. Find the sum of 100 terms of the series \(1 \cdot 3 \cdot 5 \cdot 7\). 0.... Ans 10000.
4. The greatest term is 70 , the common difference 3 , and the number of terms 21 : what is the least tern and the sum of the series?

Anṣ. Least term, 10 ; sum of series, 840 .
5. The first term is 4 , the common difference 8 , and the number of terms 8: what is the last term, and the sum of the series?

Ans. \(\{\) Last term, 60
1 Sum \(=256\).
6. The first term is 2 , the last term 20 , and the number of terms 10: what is the common difference? Ans. 2.
7. Insert four means between the two numbers 4 and 19: what is the series? Ans. 4.7.10.13.16.19.
8. The first term of a decreasing arithmetical progression is 10 , the common difference one-third, and the number of terms 21 : required the sum of the series. Ans. 140.
9. In a progression by differences, having given the common difference 6 , the last term 185, and the sum of the terms 2945 : find the first term, and the number of terms. Ans. First term \(=5\); number of terms, 31.
10. Find nine arithmetical means between each antecedent and consequent of the progression \(2.5 .8 .11 .14 \ldots\)

Ans. Common diff., or \(d=0.3\).
11. Find the number of men contained in a triangular battalion, the first rank containing one man, the second 2, the third 3 , and so on to the \(n^{t h}\), which contains \(n\). In other words, find the expression for the sum of the natural numbers \(1,2,3 \ldots\), from 1 to \(n\) inclusively.
\[
\text { Ans. } S=\frac{n(n+1)}{2}
\]

\footnotetext{
12. Find the sum of the \(n\) first terms of the progression of uneven numbers, 1.3.5.7.9,... Ans. \(S=n^{2}\).
}
13. Ore hundred stones being placed on the ground in a straight line, at the distance of 2 yards apart, how far will a person travel who shall bring them one by one to a basket, placed at a distance of 2 yards from the first stone? Ans. 11 mile, sui yards.

\section*{GEOMETRICAL PROPORTION AND PROGRESSION.}
185. Ratio is the quotient arising from dividing one quantity by another quantity of the same kind, regarded as a standard. Thus, if the numbers 3 and 6 have the same unit, the ratio of 3 to 6 will be expressed by
\[
\frac{6}{3}=2
\]

And in general, if \(A\) and \(B\) represent quantities of the same kind, the ratio of \(A\) to \(B\) will be expressed by
\[
\frac{B}{A} .
\]
186. The character \(\propto\) indicates that one quantity is proportional to another. Thus,
\[
A \propto B
\]
is read, \(A\) proportional to \(B\).
If there be four numbers,
\[
2,4,8,16,
\]
having such values that the second divided by the first is equal to the fourth divided by the third, the numbers are

\footnotetext{
185. What is ratio? What is the ratio of 3 to 6 ? Of 4 to 12 ?
186. What is proportion? How do you express that four numbers are in proportion? What are the numbers called? What are the first and fourth terms culled? What the second and third?
}
said to form a proportion. And in general, if there be four quantities, \(A, B, C\), and \(D\), having such values that,
\[
\frac{B}{A}=\frac{D}{C},
\]
then, \(A\) is said to have the same ratio to \(B\) that \(C\) has to \(D\) : or, the ratio of \(A\) to \(B\) is equal to the ratio of \(C\) to \(D\). When four quantities have this relation to each other, compared together two and two, they are said to form a geometrical proportion.

To express that the ratio of \(A\) to \(B\) is equal to the ratio of \(C\) to \(D\), we write the quantities thus,
\[
A: B:: C: D
\]
and read, \(A\) is to \(B\) as \(C\) to \(D\).
The quantities which are compared, the one with the other, are called terms of the proportion. The first and last terms are called the two extremes, and the second and third terms, the two means. Thus, \(A\) and \(D\) are the extremes, and \(B\) and \(C\) the means.
187. Of four terms of a proportion, the first and third are called the antecedents, and the second and fourth the consequents ; and the last is said to be a fourth proportional to the other three, taken in order. Thus, in the last proportion \(A\) and \(C\) are the antecedents, and \(B\) and \(D\) the consequents.
188. Three quantities are in proportion, when the first has the same ratio to the second that the second has to the

\footnotetext{
187. In four proportional quantities, what are the first and third called? What the second and fourth?
188. When are three quantities proportional? What is the middle one called f
}
third; and then the middle term is said to be a mean proportional between the other two. For example,
\[
3: 6:: 6: 12 \text {; }
\]
and 6 is a mean proportional between 3 and 12 .
189. Four quantities are said to be in proportion by inversion, or inversely, when the consequent are made the antecedents, and the antecedents the consequent.

Thus, if we have the proportion,
\[
3: 6:: 8 \cdot 16
\]
the inverse proportion would be,
\[
6: 3:: 16.8 .
\]
190. Quantities are said to be in proportion by alterna. W ion, or alternately, when antecedent is compared with antecedent, and consequent with consequent.

Thus, if we have the proportion,
\[
3: 6:: 8: 16
\]
the alternate proportion would be,
\[
3: 8:: 6: 16 .
\]
191. Quantities are said to be in proportion by composition, when the sum of the antecedent and consequent is compared either with antecedent or consequent

Thus, if we have the proportion,
\[
2: 4:: 8: 16,
\]

\footnotetext{
189. When are quantities said to be in proportion by inversion, or in tersely ?
190. When are quantities in proportion by alternation?
191. When are quantities in proportion by composition \&
}
the proportion by composition would be,
\[
\begin{aligned}
& 2+4: 2:: 8+16: 8 \\
& 2+4: 4:: 8+16: 16
\end{aligned}
\]
and,
192. Quantities are said to be in proportion by division, when the difference of the antecedent and consequent is compared either with antecedent or consequent.

Thus, if we have the proportion,
\[
3: 9:: 12: 36,
\]
the proportion by division will be,
\[
\begin{array}{ll} 
& 9-3: 3:: 36-12: 12 ; \\
\text { and, } & 9-3: 9:: 36-12: 36 ;
\end{array}
\]
193. Equi-multiples of two or more quantities are the products which arise from multiplying the quantities by the same number.

Thus, if we have any two numbers, as 6 and 5 , and multiply them both by any number, as 9 , the equi-multiples will be 54 and 45 ; for,
\[
6 \times 9=54, \text { and } 5 \times 9=45
\]

Also, \(m \times A\), and \(m \times B\), are equi-multiples of \(A\) and \(B\), the common multiplier being \(m\).
194. Two quantities \(A\) and \(B\), which may change their values, are reciprocally or inversely proportional, when one is proportional to unity divided by the other, and then their product remains constant.

\footnotetext{
192. When are quantities in proportion by division?
198. What are equi-nultiples of two or more quantities?
194. When are two quantities said to be reciprocally proportiounl?
}

We express this reciprocal or inverse relation thus,
\[
A \propto \frac{1}{B}
\]
in which \(A\) is said to be inversely proportional to \(\boldsymbol{B}\).
195. If we have the proportion,
we have,
\[
\begin{aligned}
& A: B: C: D, \\
& \frac{B}{A}=\frac{D}{C}, \quad \text { (Art. 186); }
\end{aligned}
\]
and by clearing the cquation of fractions, we have,
\[
B C=A D
\]

That is: Of four proportional quantities, the procluct of the two extremes is equal to the product of the two means.

This general principle is apparent in the proportion between the numbers,
\[
2: 10:: 12: 60
\]
which gives, \(2 \times 60=10 \times 12=120\).
196. If four quantities, \(A, B, C, D\), are so related to each other, that
we shall also have, \(\quad \frac{B}{A}=\frac{D}{C} ;\)
and hence, \(\quad A: B:: C: D\).
That is: If the product of two quantities is equal to the prochuct of two other quantities, two of them may be made the cxtremes, and the other two the means of a proportion.

\footnotetext{
195. If four quantities are proportional, what is the product of the two means equal to?
196. If the product of two quantities is equal to the product of two other quantities, may the four be placed in a proportion? How?
}

Thus, if we have,
\[
2 \times 8=4 \times 4
\]
we also have,
\[
2: 4:: 4: 8
\]

19\%. If we have three proportional quantities,
\[
A: B: B: C
\]
we have,
\[
\frac{B}{A}=\frac{C}{B} ;
\]
hence,
\[
B^{2}=A C
\]

That is: If three quantities are proportional, the square of the middle term is equal to the product of the two extremes

Thus, if we have the proportion,
\[
3: 6:: 6: 12
\]
we shall also have,
\[
6 \times 6=6^{2}=3 \times 12=36
\]
198. If we have,
\[
A: B: C: D, \text { and consequently, } \frac{B}{A}=\frac{D}{C}
\]
multiply both members of the last equation by \(\frac{C}{\bar{B}}\), and we then obtain,
\[
\frac{C}{A}=\frac{D}{B}
\]
and, hence, \(A: C:: B: D\).
That is: If four quantities are proportional, they will be in proportion by alternation.
197. If three quantities are proportional, what is the product of the extremes equal to?
198. If four quantities are proportional, will they de in proportion by alternation?

Let us take, as an example,
\[
10: 15:: 2030 .
\]
\(W_{f}\) shall have, by alternating the terms,
\[
10: 20 \cdot: 15: 30 .
\]
199. If we have,
\[
A: B:: C: D, \text { and } A: B:: E: F
\]
we shall also have,
\[
\frac{B}{A}=\frac{D}{C}, \text { and } \frac{B}{A}=\frac{F}{E} ;
\]
hence, \(\quad \frac{D}{C}=\frac{F}{E}\), and \(C: D:: E: F\).
That is: If there are tioo sets of proportions having an an tecedent and consequent in the one, equal to an antecerdent and consequent of the other, the remaining terms will be proportional.

If we have the two proportions,
\[
2: 6:: 8: 24, \text { and } 2: 6:: 10: 30,
\]
we shall also have,
\[
8: 24:: 10: 30 .
\]
200. If we have,
\[
A: B:: C: D, \text { and consequently, } \frac{B}{A}=\frac{D}{C},
\]
we have, by dividing 1 by each member of the equation,
\[
\frac{A}{B}=\begin{aligned}
& C \\
& D
\end{aligned} \text {, and consequently, } B: A:: D: C .
\]
103. If you have two sets of proportions haring an antecedent and consequent in each, equal ; what will follow?
200. If four quantities are in proportion, will ther be in proportion' when taken inversely?

That is: Four proportional quantities will be in proportion, when taken inversely.

To give an example in numbers, take the proportion,
\[
7: 14:: 8: 16 ;
\]
then, the inverse proportion will be,
\[
14 \cdot 7:: 16: 8 \text {, }
\]
in which the ratio is one half
201. The proportion,
\[
A: B:: C: D, \text { gives, } A \times D=B \times C .
\]

To each member of the last equation add \(B \times D\). We shall then have,
\[
(A+B) \times D=(C+D) \times B ;
\]
and by separating the factors, we obtain,
\[
A+B: B:: C+D: D .
\]
\[
\frac{b}{a+b}=\frac{d}{a+d}
\]

If, instead of adding, we subtract \(\boldsymbol{B} \times D\) from both members, we have,
\[
(A-B) \times D=(C-D) \times B
\]
which gives,
\[
A-B: B:: C-D: D
\]

That is: If four quantities are proportional, they will be in proportion by composition or division.

Thus, if we have the proportion,
\[
9: 27:: 16: 48,
\]
201. If four quantities are in proportion, will they be in proportion by composition? Will they be in proportion by division? What is the difference between composition and division?
we shall have, by composition,
that is, \(\quad 36: 27:: 64: 48\),
in which the ratio is three-fourths.
The same proportion gives us, by division,
\[
27-9: 27:: 48-16: 48 ;
\]
that is,
\[
18: 27:: 32: 48,
\]
in which the ratio is one and one-half.
202. If we have,
\[
\frac{B}{A}=\frac{D}{\bar{C}},
\]
and multiply the numerator and denominator of the first member by any number \(m\), we obtain,
\[
\frac{m B}{m A}=\frac{D}{C}, \text { and } m A: m B:: C: D
\]

That is: Equal multiples of two quantities have the samo ratio as the quantities themselves.

For example, if we have the proportion,
\[
5: 10:: 12: 24,
\]
and multiply the first antecedent and consequent by 6 , we have,
\[
30: 60:: 12: 24,
\]
in which the ratio is still 2.
203. The proportions,
\[
A: B: C: D, \text { and } A: B:: E: F
\]

\footnotetext{
202. Have equal multiples of two quantitics the same ratio as the quantities?
208. Suppose the antecedent and consequent be augmented or diminlohed by quantities having the same ratio?
}
give, \(A \times D=B \times C\), and \(A \times F=B \times E\);
adding and subtracting these equations, we obtain,
\(A(D \pm F)=B(C \pm E)\), or \(A: B:: C \pm E: D \pm F\).
That is: If \(C\) and \(D\), the antecedent and consequent, be augmented or diminished by quantities \(E\) and \(F\), which have the same ratio as \(C\) to \(D\), the resulting quantities will also have the same ratio.

Let us take, as an example, the proportion,
\[
9: 18:: 20: 40
\]
in which the ratio is 2 .
If we augment the antecedent and consequent by the numbers 15 and 30 , which have the same ratio, we shall have,
\[
\begin{gathered}
9+15: 18+30:: 20: 40 \\
24: 48:: 20: 40
\end{gathered}
\]
in which the ratio is still 2.
If we diminish the second antecedent and consequent by these numbers respectively, we have,
\[
9: 18 \cdot: 20-15: 40-30 ;
\]
that is,
\[
9: 18:: 5: 10,
\]
in which the ratio is till 2 .
204. If we have several proportions,
\[
\begin{aligned}
& A: B:: C: D, \text { which gives } A \times D=B \times C, \\
& A: B:: E: F, \text { which gives } A \times F=B \times E \\
& A: B:: G: I, \text { which gives } A \times H=B \times G, \\
& \quad \& c ., \text { \&c., }
\end{aligned}
\]

\footnotetext{
204. In any number of proportions having the same ratio, how will any one antecedent be to its consequent?
}
we shall have, by addition,
\[
A(D+F+H)=B(C+E+G)
\]
and by separating the factors,
\[
A: B: C+E+G: D+F+H .
\]

That is: In any number of proportions having the same ritio, any antecedent will be to its consequent as the sum of the antecedents to the sum of the consequents.

Let us take, for example,
\[
2: 4:: 6: 12, \text { and } 1: 2:: 3: 6, \text { \&c. }
\]

Then
\[
\begin{gathered}
2: 4:: 6+3: 12+6 ; \\
2: 4:: 9: 18
\end{gathered}
\]
that is,
in which the ratio is still 2 .
205. If we have four proportional quantities,
\[
A: B:: C: D, \text { we have, } \frac{B}{A}=\frac{D}{C}
\]
and raising both members to any power whose exponent is \(n\), or extracting any root whose index is \(n\), we have,
\[
\begin{gathered}
\frac{B^{n}}{A^{n}}=\frac{D^{n}}{C^{n}}, \quad \text { and consequently } \\
A^{n}: B^{n}:: C^{n}: D^{n}
\end{gathered}
\]

That is: If four quantities are proportional, their like powers or roots will be proportional.

If we have, for example,
\[
2: 4:: 3: 6
\]
we shall have
\[
2^{2}: 4^{2}:: 3^{2}: 6^{2} ;
\]
205. In four proportional quantities, how are like powers or roots?
that is, \(\quad 4: 16:: 9: 36\),
in which the terms are proportional, the ratio being 4.
206. Let there be two sets of proportions,
\[
\begin{array}{ll}
A: B:: C: D, \text { which gives } & \frac{B}{A}=\frac{D}{C} \\
E: F:: G: I, & \text { which gives } \\
\frac{F}{E}=\frac{H}{G}
\end{array}
\]

Multiply them together, member by member, we have,
\[
\begin{gathered}
\frac{B \times F}{A \times E}=\frac{D \times H}{C \times G}, \\
A \times E: B \times F:: C \times G: D \times H .
\end{gathered}
\]

That is: In two sets of proportional quantities, the prorlucts of the corresponding terms are proportional.

Thus, if we have the two proportions,
\[
8: 16:: 10: 20,
\]
and, \(3: 4:: 6: 8\),
we shall have, \(24: 64:: 60: 160\).

\section*{GEOMIETRICAL PROGRESSION.}

20\%. We have thus far only considered the case in which the ratio of the first term to the second is the same as that of the third to the fourth.

\footnotetext{
206. In two sets of proportions, how are the products of the correspond ing terms?
207. What is a geometrical progression? What is the ratio of the progression? If any term of a progression be multiplied by the ratio, what will the product be? If any term be divided by the ratio, what
}

If we have the farther condition, that the ratio of the second term to the third shall also be the same as that of the first to the second, or of the third to the fourth, we shall have a series of numbers, each one of which, divided by the preceding one, will give the same ratio. IIence, if any term be multiplied by this quotient, the product will be the succeeding term. A series of numbers so formed, is called a geometrical progression. Hence,

A Geometrical Progression, or progression by quotients, is a series of terms, each of which is equal to the preceding term multiplied by a constant number, which number is called the ratio of the progression. Thus,
\[
1: 3: 9: 27: 81: 243, \& \in .
\]
is a geometrical progression, in which the ratio is 3 . It is written by marely placing two dots between the terms.
\[
\text { Also, } 64: 32: 16: 8: 4: 2: 1
\]
is a geometrical progression in which the ratio is one-half.
In the first progression each term is contained three times in the one that follows, and hence the ratio is 3 . In the second, each term is contained one-half times in the one which follows, and hence the ratio is one-half.

The first is called an increasing progression, and the second a decreasing progression.

Let \(a, b, c, d, e, f, \ldots\) be numbers, in a progression by quotients they are written thus:
\[
a: b: c: d: e: f: g \ldots
\]
and it is enunciated in the same manner as a progression by differences. It is necessary, however, to make the distinc

\footnotetext{
will the quotient be? How is a progression by quotients written? Which of the terms is only an antecedent? Which only a consequent? How may each of the others be considered?
}
tion, that one is a series formed by equal differences, and the other a series formed by equal quotients or ratios. It should be remarked that each term is at the same time an antecedent and a consequent, except the first, which is only an antecedent, and the last, which is only a consequent.
208. Let \(r\) denote the ratio of the progression,
\[
a: b: c: d \ldots
\]
\(r\) being \(>1\) when the progression is increasing, and \(r<1\), when it is decreasing. Then, since,
\[
\frac{b}{a}=r, \quad \frac{c}{b}=r, \quad \frac{d}{c}=r, \quad \frac{e}{d}=r, \quad \& i e
\]
we have,
\[
\begin{gathered}
b=a r, \quad c=b r=a r^{2}, \quad d=c r=a r^{3}, \quad e=d r=a r^{4}, \\
f=e r=a r^{5} \ldots
\end{gathered}
\]
that is, the second term is equal to \(a r\), the third to \(a r^{2}\), the fourth to \(a r^{3}\), the fifth to \(a r^{4}, \mathbb{\&}\).; and in general, the \(n\)th term, that is, one which has \(n-1\) terms before it, is expressed by \(a r^{n-1}\).

Let \(l\) be this term - we then have the formula,
\[
l=a r^{n-1},
\]
by means of which we can obtain any term without being obliged to find all the terms which precede it. ILene, to find the last term of a progression, we have the following

> RULE.
I. Raise the ratio to a power whose exponent is one less than the number of terms.
II. Multiply the power thus found by the first term: the product will be the required term.

\footnotetext{
208. By what letter do we denote the ratio of a progression? In an increasing progression is \(r\) greater or less than 1 ? In a decreasing pro-
}

\section*{EXAMPLES.}
1. Find the 5 th term of the progression,
\[
2: 4: 8: 16 \ldots
\]
in which the first term is 2 , and the common ratio 2.
\[
5 \text { th term }=2 \times 2^{4}=2 \times 16=32 . \text { Ans. }
\]
2. Find the 8 th term of the progression,
\[
\begin{gathered}
2: 6: 18: 54 \ldots \\
\text { 8th term }=2 \times 3^{7}=2 \times 2187=4374 . \text { Ans. }
\end{gathered}
\]
3. Find the 6th term of the progression,
\[
2: 8: 32: 128 . .
\]

6 th term \(=2 \times 4^{5}=2 \times 1024=2048\). Ans
4. Find the 7 th term of the progression,
\[
3: 9: 27: 81 \ldots
\]

7th term \(=3 \times 3^{6}=3 \times 729=2187\). Ans.
5. Find the 6th term of the progression,
\[
4: 12: 36: 108 \ldots
\]
\[
6 \text { th term }=4 \times 3^{5}=4 \times 243=972 . \text { Ans. }
\]
6. A person agreed to pay his servant 1 cent for the first day, two for the second, and four for the third, doubling every day for ten days: how much did he receive on the tenth day?

Ans. \$5.12.

\footnotetext{
gression is \(r\) greater or less than 1? If \(a\) is the first term and \(r\) the satio, what is the second term equal to? What the third? What the fourth? What is the last term equal to? Give the rule for finding the hast term.
}
7. What is the 8th term of the progression,
\[
9: 36: 144: 576 \ldots
\]

8th term \(=9 \times 4^{7}=9 \times 16384=147450\). Ans.
8. Find the 12 th term of the progression,
\[
\begin{gathered}
64: 16: 4: 1: \frac{1}{4} \cdots \\
12 \text { th term }=64\left(\frac{1}{4}\right)^{11}=\frac{4^{3}}{4^{11}}=\frac{1}{4^{8}}=\frac{1}{65536} \cdot \text { Ans. }
\end{gathered}
\]
209. We will now proceed to determine the sum of \(n\) terms of a progression,
\[
a: b: c: d: e: f: \ldots: i: \neq l
\]
\(l\) denoting the \(n\)th term.
We have the equations (Art. 208),
\(b=a r, \quad c=b r, \cdot d=c r, \quad e=d r, \ldots k=i r, \quad l=k r\), and by adding them all together, member to member, we deduce,

Sum of 1 st memlers.
Sum of \(2 d\) members.
\(b+c+d+e+\ldots+r+l=(a+b+c+d+\ldots+i+k) r ;\)
in which we see that the first member contains all the terms but \(a\), and the polynomial, within the parenthesis in the second member, contains all the terms but \(l\). Hence, if we call the sum of the terms \(S\), we have,
\(S-a=(S-l) r=S r-l r, \quad \therefore S r-S=l r-a\)
whence,
\[
S=\frac{l r-a}{r-1}
\]

\footnotetext{
209. Give the rule for finding the sum of the series. What is the firat step? What the second? What the third?
}

Therefore, to obtain the sum of all the terms, or oum of the series of a geometrical progression, we have the
RULK.

\section*{I. Multiply the last term by the ratio:}
II. Subtract the first term from the product:
III. Divide the remainder by the ratio diminished by 1 and the quotient will be the sum of the series.
1. Find the sum of eight terms of the progression,
\[
\begin{aligned}
& 2: 6: 18: 54: 162 \ldots 2 \times 3^{7}=4374 \\
& \qquad S=\frac{l r-a}{r-1}=\frac{13122-2}{2}=6560
\end{aligned}
\]
2. Find the sum of the progression,
\[
\begin{gathered}
2: 4: 8: 16: 32 \\
S=\frac{l r-a}{r-1}=\frac{64-2}{1}=62
\end{gathered}
\]
3. Find the sum of ten terms of the progression,
\[
2: 6: 18: 54: 162 \ldots 2 \times 3^{9}=39366
\]

Ans. 59048
4. What debt may be discharged in a year, or twelve months, by paying \(\$ 1\) the first month, \(\$ 2\) the second month, \$4 the third month, and so on, each succeeding paymeut being double the last; and what will be the last payment i
\[
\text { Ans. }\left\{\begin{array}{l}
\text { Debt, . . } \$ 4095 \\
\text { Last payment, } \$ 204,
\end{array}\right.
\]
5. A daughter was married on New-Year's day. Her Gather gave her \(1 s\)., with an agreement to double it on the first of the next noonth, and at the beginning of each succeeding month to double what she had previously received. How m A14. £204 158.
6. A man bought ten bushels of wheat, on the condition that he should pay 1 cent for the first bushel, 3 for the second, 9 for the third, and so on to the last: what did he pay for the last bushel, and for the ten bushels ?
\[
\text { Ans. }\left\{\begin{array}{l}
\text { Last bushel, } \$ 19683 . \\
\text { Total cost, } \\
\$ 29524 .
\end{array}\right.
\]
7. A man plants 4 bushels of barley, which, at the first narvest, produced 32 bushels; these he also plants, which, in like manner, produce 8 fold; he again plants all his crop, and again gets 8 fold, and so on for 16 years: what is his last crop, and what the sum of the series?
\[
\text { Ans. }\left\{\begin{array}{l}
\text { Last, } 140737488355328 \text { bush. } \\
\text { Sum, } 160842843834660 .
\end{array}\right.
\]
210. When the progression is decreasing, we have, \(r<1\), and \(l<a\); the above formula,
\[
S=\frac{l r-a}{r-1}
\]
for the sum, is then written under the form,
\[
S=\frac{a-l r}{1-r}
\]
in order that the two terms of the fraction may be positive.
1. Find the sum of the terms of the progression,
\[
\begin{gathered}
32: 16: 8: 4: 2 \\
S=\frac{a-l r}{1-r}=\frac{32-2 \times \frac{1}{2}}{\frac{1}{2}}=\frac{31}{\frac{1}{2}}=62
\end{gathered}
\]
210. What is the formula for the sum of the series of a decreasing progression?
2. Find the sum of the first twelve terms of the progression,
\[
\begin{gathered}
64 \cdot 16: 4: 1: \frac{1}{4}: \ldots: 64\left(\frac{1}{4}\right)^{11}, \text { or } \frac{1}{65536} . \\
S=\frac{r-l r}{1-r}=\frac{64-\frac{1}{65536} \times \frac{1}{4}}{\frac{3}{4}}=\frac{256-\frac{1}{65536}}{3}=85+\frac{65535}{196008}
\end{gathered}
\]
211. Remark.-We perceive that the principal difficulty consists in obtaining the numerical value of the last term, a tedious operation, even when the number of terms is not very great.
3. Find the sum of six terms of the progression,
\[
512: 128: 32 \ldots
\]

Ans. 622 \(\frac{1}{2}\)
4. Find the sum of seven terms of the progression,
\[
2187 \text { : } 729: 243 \ldots
\]

Ans. 3279
5. Find the sum of six terms of the progression,
\[
972: 324: 108 \ldots
\]

Ans. 1456
6. Find the sum of eight terms of the progression,
\[
147456: 36864: 9216 \cdots \text { Ans. } 196605 .
\]

DF PROGRESSIONS HAVLNG AN LNFLNTTE NUMEER OF TERMS
212 Let there be the decreasing progression,
\[
a: b: c: d: e \vdots f: \ldots
\]
212. When the progression is decreasing, and the number of terms inonite, what is the expression for the value of the sum of the series?
containing an indefinite number of terms. In the formula,
\[
S=\frac{a-l r}{1-r}
\]
substitute for \(l\) its value, \(a r^{n-1}\), (Art. 208), and we hare,
\[
S=\frac{a-a r^{n}}{1-r}
\]
which expresses the sum of \(n\) terms of the progression. This may be put under the form,
\[
S=\frac{a}{1-r}-\frac{a r^{z}}{1-r}
\]

Now, since the progression is decreasing, \(r\) is a proper fraction; and \(r^{n}\) is also a flaction, which diminishes as \(n\) increases. Therefore, the greater the number of terms we take, the more will \(\frac{a}{1-r} \times r^{n}\) diminish, and consequently, the more will the entire sum of all the terms approximate to an equality with the first part of \(S\), that is, to \(\frac{a}{1-r}\). Finally, when \(n\) is taken greater than any given number, or \(n=\) infinity, then \(\frac{a}{1-r} \times r^{n}\) will be less than any given number, or will become equal to 0 ; and the expression, \(\frac{a}{1-r}\), will then represent the true value of the sum of all the terms of the series. Whence we may conclude, that the expression for the sum of the terms of a decreasing progression, in which the number of terms is infinite, is,
\[
S=\frac{a}{1-r}
\]
that is, equal to the first term, divided by 1 minus the ratio.

This is, properly speaking, the limit to which the partial sums approach, as we take a greater number of terms in the progression. The difference between these sums and \(\frac{a}{1-r}\), nay be made as small as we please, but will only become nothing when the number of terms is infinite.

\section*{EXAMPLES.}
1. Find the sum of
\[
1: \frac{1}{3}: \frac{1}{9}: \frac{1}{27}: \frac{1}{81}, \text { to infinity. }
\]

We have, for the expression of the sum of the terms,
\[
S=\frac{a}{1-r}=\frac{1}{1-\frac{1}{3}}=\frac{3}{2}=1 \frac{1}{2} . \quad \text { Ans. }
\]

The error committed by taking this expression for the value of the sum of the \(n\) first terms, is expressed by
\[
\frac{a}{1-r} \times r^{*}=\frac{3}{2}\binom{1}{3}^{n}
\]

First take \(n=5\); it becomer,
\[
\frac{1}{2}\left(\frac{1}{3}\right)^{5}=\frac{1}{2 \cdot 3^{4}}=\frac{1}{162} .
\]

When \(n=6\), we find,
\[
\frac{3}{2}\left(\frac{1}{3}\right)^{6}=\frac{1}{162} \times \frac{1}{3}=\frac{1}{486} .
\]

Hence, we see, that the error committed by taking \({ }_{\frac{1}{2}}^{3}\) for the sum of a certain number of terms, is less in proportion as this number is greater.
2. Again, take the procrression,
\[
1: \frac{1}{2}: \frac{1}{4}: \frac{1}{3}: \frac{1}{16}: \frac{1}{32}: \& c . \ldots
\]

We kave, \(S=\frac{a}{1-r}=\frac{1}{1-\frac{1}{2}}=2 . \quad\) Ans.
3. What is the sum of the progression,
\(1, \frac{1}{10}, \frac{1}{100}, \frac{1}{1000}, \frac{1}{10000}, \quad \& c .\), to infinity.
\[
S=\frac{a}{1-r}=\frac{1}{1-\frac{1}{10}}=1 \frac{1}{9} \cdot \text { Aus. }
\]
213. In the several questions of geometrical progres sion, there are five numbers to be considered:
\[
\begin{aligned}
& \text { 1st. The first term, . . } \quad a . \\
& \text { 2d. The ratio, . . . . } \\
& \text { 3d. The number of terms. } n . \\
& \text { 4th. The last term, . . } l \text {. } \\
& \text { 5th. The sum of the terms, }
\end{aligned}
\]
214. We shall terminate this subject by solving this problem:

To find a mean proportional between any two numbers, as \(m\) and \(n\).

Denote the required mean by \(x\). We shall then have (Art. 197),
and hence,
\[
\begin{aligned}
& x^{2}=\frac{m \times n ;}{\sqrt{m} \times n} \\
& x=
\end{aligned}
\]

\footnotetext{
213. How many numbers are considered in a geometrical progression? What are they?
214. How do you find a mean proportional between two vumbers?
}

That is: Multiply the two numbers together, and extract the square root of the product.
1. What is the geometrical mean between the numbers 2 and 8 ?
\[
\text { Mean }=\sqrt{8 \times 2}=\sqrt{16}=4 . \quad \text { Ans. }
\]
2. What is the mean between 4 and 16 ?

Ans. 8
3. What is the mean between 3 and 27? Ans. 9
4. What is the mean between 2 and 22 ? Ans. 12.
E. What is the mean between 4 and 64? Ans. 16.
\[
\begin{aligned}
& 2 \% 4.18 y 6 \\
& 100 \% 2 \div=
\end{aligned}
\]

\section*{CHAPTER X.}
```

OF LOGARITHMS.

```
215. The nature and properties of the logarithms in common use, will be readily understood by considering attentively the different powers of the number 10. They are,
\[
\begin{aligned}
& 10^{0}=1 \\
& 10^{1}=10 \\
& 10^{2}=100 \\
& 10^{3}=1000 \\
& 10^{4}=10000 \\
& 10^{5}=100000 \\
& \& c ., \quad \& c .
\end{aligned}
\]

It is plain that the exponents \(0,1,2,3,4,5, \& c\). , form an arithmetical series of which the common difference is 1 ; and that the numbers \(1,10,100,1000,10000,100000, \& c\). , form a geometrical progression of which the common ratio is 10 . The number 10 is called the base of the system of logarithms; and the exponents \(0,1,2,3,4,5, \& c\)., are the logarithms of

\footnotetext{
215. What relation exists between the exponents \(1,2,3, \& c\) ? How aro the corresponding numbers \(10,100,1000\) ? What is the common difference of the exponents? What is the common ratio of the corresponding numbers? What is the base of the common system of loga. rithms? What are the exponents? Of what number is the exponent 1 the logarithm? Tre exponent 2? The exponent 3?
}
the numbers which are produced by raising 10 to the powers denoted by those exponents.
216. If we denote the logarithm of any number by \(m\), then the number itself will be the \(m\) th power of 10 ; that is, if we represent the corresponding number by \(M\),
\[
10^{m}=M
\]

Thus, if we make \(m=0, M\) will be equal to 1 ; if \(m=1\), \(M\) will be equal to 10 , dec. Hence,

The logarithm of a number is the exponent of the power to which it is necessury to raise the buse of the system in order to produce the number.
217. If, as before, 10 denotes the base of the system of logarithms, \(m\) any exponent, and \(M\) the corresponding number, we shall then have,
\[
\begin{equation*}
10^{m}=M \tag{1.}
\end{equation*}
\]
in which \(m\) is the logarithm of \(M\).
If we take a second exponent \(n\), and let \(N\) denote the corresponding number, we shall have,
\[
\begin{equation*}
10^{n}=N \tag{2.}
\end{equation*}
\]
in which \(n\) is the logarithm of \(N\).
If, now, we multiply the tirst of these equations by the second, member by member, we have,
\[
10^{m} \times 10^{n}=10^{m+n}=M \times N
\]
but since 10 is the base of the system, \(m+n\) is the logir rithm \(M \times N\); hence,

\footnotetext{
216. If we denote the base of a system by 10 , and the exponent by \(n\), what will represent the corresponding number? What is the logarithm of a number?
217. To what is the sum of the logarithms of any two numbers equal? To what, then, will the addition of logarithus correspond?
}

The sum of the logarithms of any two numbers is equal to the logarithm of their product.

Therefore, the addition of logarithms corresponds to the multiplication of their numbers.
218. If we divide Equation (1) by Equation (2), memker by member, we have,
\[
\frac{10^{m}}{10^{n}}=10^{m-n}=\frac{M}{N}
\]
but since 10 is the base of the system, \(m-10\) is the logar rithm of \(\frac{M I}{N}\); hence,

If one number be divided by another, the logarithm of the quotient will be equal to the logarithm of the dividend, diminished by that of the divisor.

Therefore, the subtraction of logarit.ims corresponds to the division of their numbers.
219. Let us examine further the equations,
\[
\begin{aligned}
& 10^{0}=1 \\
& 10^{1}=10 \\
& 10^{2}=100 \\
& 10^{3}=1000 \\
& \& c ., \quad \& c .
\end{aligned}
\]

It is plain that the logarithm of 1 is 0 , and that the logarithm of any number between 1 and 10 , is greater than

\footnotetext{
218. If one number be divided by another, what will the logarithm of the quotient be equal to? To what, then, will the subtraction of \(\log a\) ithris correspond?
219. What is the logarithm of 1 ? Between what limits are the logarithms of ai: numbers between 1 and 10? How are they generally expressed?
}

0 and less than 1. The logarithm is generally expressed by decimal fractions; thus,
\[
\log 2=0.301030
\]

The logarithm of any number greater than 10 and less than 100, is greater than 1 and less than 2, and is expressed by 1 and a decimal fraction; thus,
\[
\log 50=1.698970 .
\]

The part of the logarithm which stands at the left of the decimal point, is called the characteristic of the logarithm. The characteristic is always one less than the number of places of figures in the number whose logarithm is taken.

Thus, in the first ease, for numbers between 1 and 10 , there is but one place of figures, and the characteristic is 0 . For numbers between 10 and 100 , there are two places of figures, and the characteristic is 1 ; and similarly for other numbers.

\section*{TABLE OF LOGARITHMS.}
220. A table of logarithms is a table in which are written the logarithms of all numbers between 1 and some other given number. A table showing the logarithms of the numbers between 1 and 100 is annexed. The numbers are written in the column designated by the letter N , and the logarithms in the column designated by Log.

How is it with the logarithms of numbers between 10 and 100? What ia that part of the logarithm called which stands at the left of the char acteristic? What is the value of the characteristic?
220. What is a table of logarithms? Explaic the manber of finding the lngarithms of numbers between 1 and 100?

TABLE.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline N. & Log, & N. & Lug. & N. & Log. & N. & Log. \\
\hline 1 & 0.000000 & 26 & 1.414973 & 51 & 1.707570 & 76 & 1.880814 \\
\hline 2 & 0.301030 & 27 & 1.431364 & 52 & 1.716003 & 77 & 1.886491 \\
\hline 3 & 0.477121 & 28 & 1.447158 & 53 & 1.724276 & 78 & 1.892095 \\
\hline 4 & 0.602060 & 29 & 1.462398 & 54 & 1.732394 & 79 & 1.897627 \\
\hline 5 & 0.698970 & 30 & 1.477121 & 55 & 1.740363 & 80 & 1.903090 \\
\hline 6 & \(\overline{0.778151}\) & \(\overline{31}\) & \(\overline{1.491362}\) & \(\overline{56}\) & 1.748188 & 81 & \(\overline{1.908485}\) \\
\hline 7 & 0.845098 & 32 & 1.505150 & 57 & 1.755875 & 82 & 1.913814 \\
\hline 8 & 0.903090 & 33 & 1.518514 & 58 & 1.763428 & 83 & 1.919078 \\
\hline 9 & 0.954243 & 34 & 1.531479 & 59 & 1.770852 & 84 & 1.924279 \\
\hline 10 & 1.000000 & 35 & 1.544068 & 60 & 1.778151 & 85 & 1.929419 \\
\hline 11 & \(\overline{1.041393}\) & \(\overline{36}\) & \(\overline{1.556303}\) & \(\overline{6} \overline{1}\) & \(\overline{1.785330}\) & 86 & \(\overline{1.934498}\) \\
\hline 12 & 1.079181 & 37 & 1.568202 & 62 & 1.792392 & 87 & 1.939519 \\
\hline 13 & 1.113943 & 38 & 1.579784 & 63 & 1.799341 & 88 & 1.944483 \\
\hline 14 & 1.146128 & 39 & 1.591065 & 64 & 1.806180 & 89 & 1.949390 \\
\hline 15 & 1.176091 & 40 & 1.602060 & 65 & 1.812913 & 90 & 1.954243 \\
\hline \(\overline{16}\) & \(\overline{1.204120}\) & \(\overline{41}\) & \(\overline{1.621784}\) & \(\overline{66}\) & \(\overline{1.819544}\) & 91 & 1.959041 \\
\hline 17 & 1.230449 & 42 & 1.623249 & 67 & 1.826075 & 92 & 1.963788 \\
\hline 18 & 1.255273 & 43 & 1.633468 & 68 & 1.832509 & 93 & 1.968483 \\
\hline 19 & 1.278754 & 44 & 1.643453 & 69 & 1.838849 & 94 & 1.973128 \\
\hline 20 & 1.301030 & 45 & 1.653213 & 70 & 1.845098 & 95 & 1.977724 \\
\hline 21 & \(\overline{1.322219}\) & 46 & \(\overline{1.662758}\) & \(\overline{71}\) & \(\overline{1.851258}\) & 96 & 1.982271 \\
\hline 22 & 1.342423 & 47 & 1.672098 & 72 & 1.857333 & 97 & 1.986772 \\
\hline 23 & 1.361728 & 48 & 1.681241 & 73 & 1.863323 & 98 & 1.991226 \\
\hline 24 & 1.380211 & 49 & 1.690196 & 74 & 1.869232 & 99 & 1.995635 \\
\hline 25 & 1.397940 & 50 & 1.698970 & 75 & 1.875061 & 100 & 2.000000 \\
\hline
\end{tabular}

EXAMPLES.
1. Let it be required to multiply 8 by 9 , by means of logarithms. We have seen, Art. 216, that the sum of the logarithms is equal to the logarithm of the product. Therefore, find the logarithm of 8 from the table, which is 0.903090 , and then the logarithm of 9 , which is 0.954243 ; and their sum, which is 1.857333 , will be the logarithm of the product. In searching along in the table, we find that 72 stands opposite this logarithm; hence, 72 is the product of 8 by 9 .
2. What is the product of 7 by 12 ?

Logarithm of 7 is, . . . . 0.845098
Logarithm of 12 is, . . . . 1.079181
Logarithm of their product, . . 1.924279
and the corresponding number is 34 .
3. What is the product of 9 by 11?
\begin{tabular}{l} 
Logarithm of \(9 \mathrm{is}, \quad . \quad\). \\
Legarithm of \(11 \mathrm{is}, \quad\). \\
Logarithm of their product,
\end{tabular}\(\quad . \quad\)\begin{tabular}{r}
0.954243 \\
1.041393 \\
\hline 1.995636
\end{tabular}
and the corresponding number is 99 .
4. Let it be required to divide 84 by 3 . We have seen in Art. 218, that the subtraction of Logarithms corresponde to the division of their numbers. Hence, if we find the logarithm of 84, and then subtract from it the logarithm of 3 , the remainder will be the logarithm of the quotient.
The logarithm of 84 is,
The logarithm of 3 is,
.
Their difference is, \(\quad\). \begin{tabular}{r}
1.924279 \\
0.477121 \\
1.447158
\end{tabular}
and the corresponding number is 28 .
5. What is the product of 6 by 7 ?
\begin{tabular}{lllll} 
Logarithm of 6 is, & . & . & . & \(0.7 ヶ 8151\) \\
Logarithm of 7 is, & . & & . & 0.845098 \\
Their sum is, & . & . & . & 1.623249
\end{tabular}
and the corresponding number of the table, 42.
,

MATHEMATICS.DAVIES' NATIONAL COURSE.
ARITHMETIC.
I. Davies' Primary Arithmetic, ..... ELATED.
2. Davies' Intellectual Arithmetic, ..... 48
3. Davies' Elements of Written Arithmetic, ..... 60
4. Davies' Practical Arithmetic, ..... 100
Key to Practical Arithmetic, ..... 90
5. Davies' University Arithmetic, ..... 140 ..... 150
Key to University Arithmetic, ..... *1 40
ALGEBRA.
1. Davies' New Elementary Algebra, ..... *1 25135Key to Elementary Algebra, . . . . . \({ }^{*} 25\)
2. Davies' University Algebra, ..... 150 ..... 160
Key to University Algebra, ..... *150
3. Davies' New Bourdon's Algebra, ..... \(225 \quad 238\)
Key to Bourdon's Algebra, ..... *2 25
GEOMETRY.
1. Davies' Elementary Geometry and Trigonometry, ..... 140 ..... 150
2. Davies' Legendre's Geometry, ..... 225 ..... 238
3. Davies' Analytical Geometry and Calculus, ..... \(250 \quad 263\)
4. Davies' Descriptive Geometry, ..... 275288
5. Davies' New Calculus, ..... 200
MENSURATION.
I. Davies' Practical Mathematics and Mensuration, ..... 150 ..... 160
2. Davies' Elements of Surveying, ..... \(250 \quad 26: 3\)
3. Davies' Shades, Shadows, and Perspective, ..... 37538
MATHEMATICAL SCIENCE.
Davies' Grammar of Arithmetic, ..... * 50
Davies' Outlines of Mathematical Science, ..... \({ }^{*} 100\)
Davies' Nature and Utility of Mathematics, \(8 \mathrm{vo}, * 200,12 \mathrm{mo}\), ..... *1 50
Davies' Metric System, ..... *1 50
Davies \& Peck's Dictionary of Mathematics, ..... * 00
Davies' Foundations Mathematical Science, . ..... 25

MATHEMATICS-Continued.

\section*{ARITHMETICAL EXAMPLES.}

Reuck's Examples in Denominate Numbers \(\$ 50\)
Reuck's Examples in Arithmetic. . . . . 100
These volumes differ from the ordinary arithmetic in their peculiariy practical character. They are composed mainly of examples, and afford the most severe and thorough discipline for the mind. While a book which should contain a complete treatise of theory and practice would be too cumbersome for every-day use, the insufticiency of practical exaraples has been a source of complaint.

\section*{HIGHER MATHEMATICS.}

Church's Elements of Calculus . . . . . 250
Church's Analytical Geometry . . . . . . 250
Church's Descriptive Geometry, with Shades, Shadows, and Perspective . . . . . . . 400
These volumes constltute the "West Point Course" in their several
Courtenay's Elements of Calculus . . . . 300
A work especially popular at the Sonth.
Hackley's Trigonometry . . . . . . . 253
With applications to navigation and surveying, nautical and practical geometry and geodesy.
Peck's Analytical Geomelry ..... 175
Peck's Practical Calculus. ..... 175
APPLIED MATHEMATICS.
Peck's Ganot's Popular Physics ..... 175
Peck's Elements of 婯echanics ..... 200
Peck's Practical Calculus ..... 175
Peck's Analytical Geometry, ..... 175

Prof. W. G. Peck, of Columbia College, has designed the first of these works for the ordinary wants of schools in the department of Natural Philosophy. The other volumes are the briefest treatises on those subjects now published. Their methods are purely practical, and unembarrassed by the details which rather confuse than simplify science.

\section*{SLATED ARITHMETICS。}

This consists of the application of an artificially slated surface to the inner cover of a book, with flap of the same opening outward, so that students may refer to the book and use the slate at one and the same time, and as though the slate were detached. When folded up, the slate preserves examples and memoranda til' needed. The material used is as durable as the stone slate. The adaitionai cost of books thus improved is trifling.

One-third or one-half shorter than any other similar. course containing the same amount of Knowledge, and thoroughly Scientific.

\section*{PECK'S}

\section*{BRIEF COURSE IN ARITHMETIC.}

\section*{By W. G. PECK, LL.D.,}

Professor of Mathematics and Astronomy in Columbia College, N. Y. Anthor of "Analytical Geometry," "Practical Calculus," "Elementary Mechanics," " Ganot's Physics."

The Theory of this concise as well as comprehensive Course of Arithmetic to meet the wants of all classes is as follows:

\section*{I.-FIRST LESSONS IN NUMBERS.}

18mo, half bound, ; slated, .
This book begins with the simplest Elementary Combinations, illue trating the processes by suitable cuts, but not by pictures culled from the primary readers and children's magazines. The true idea of illustration is to have a leading picture at the head of each part as Counting, Adc. tion, Subtraction, Multiplication, Division, and Fractions. The individual steps should be illustrated by diagrams neatly engraved and grouped, and aiding in developing the arithmetical ideas desired. This style of treatment, covering 50 or 60 pages, precedes the subject of Mental Arithmetic. The book thus formed should be all the Arithmetic needed to enter upon either the Manual or the Complete Arithmetic. Its place in all schools would be in classes of pupils younger than about twelve years.

\section*{II.-MANUAL OF PRACTICAL ARITHMETIC.}

\author{
\(208 \mathrm{pp} ., 18 \mathrm{mo}\), half bound, \(50 \%\); slated, \(60 \%\).
}

This book has the definitions clearly laid down (just as they are to stand throughout the course); the rules too are laid down exactly as they are to stand in all the after course of mathematics. There is a carefully illustrated example after each rule (illustrated, that is, by being wrought out and explained), and then follows a sufficient number of graded examples to impress the rule on the minds of the pupils. The place of this book would be in the ordinary district schools where the pupils are simply fitting themselves for the farm and the workshop, or in graded schools as a good practice before entering on the study of the Complete Arithmetic. It is adapted to children twelve to fourteen years of age, and contains enough of practical arithmetic for common life. As this course of books is chiefly intended for live teachers, and not so much for lazy ones, such questions are omitted as, "If one cow has two horns, how many horns have two cows?" The live teacher, after having taught the First Lessons, can form enough of these examples from the objects around him, and will do so.

\section*{III.-THE COMPLETE ARITHMETIC.}

318 pp., 12 mo , half bound, \(90 \%\); slated, \(\$ 1.00\).
This book contains everything necessary to a complete arithmetician. Every step is explained scientifically. Every principle is laid down in clear language. Every rule is demonstrated. A suitable number of illustrative examples are given. In this book pupils of intelligence are addressed, such as are our children of fourteen years in our average schools. The book is made consecutive, logical, scientific, concise, simple.

A student who follows this course in the order indicated will be an Arithmetician capable of making any application of his principles, and able to give a reason for the faith that is in him.

Such a course requires for its full development a live teacher-but in the end the fruits will be worthy of his labors.

An Arithmetical course should be progressive, and, as far as possible, repetitions should be avoided.

The place for such questions as a recent author uses to usher in his subjects, is in the Primary and Mental. To introdnce them into either of the higher books would be a needless repetition, and one of our ablest teachers assures us that such questions are always passed over by all good teachers.

No course in Arithmetic can be studied and mastered without much labor on the part of both pupil and teachers, and we have yet to learn of any plan by which the subject can be made so easy that children will cry for it.

With respect to the outcry of keeping up to the spirit of the age, we will say that the continually-widening circle of knowledge demands that each subject should be made ever more and more concise, more and more abbreviated.

By abbreviations emasculation is not meant, but rather elimination of all trash and superfluous matter. The repetition of primary principles in an advanced work, for instance, and the introduction of pictures from Chatterbox, are not in the direction of what we may consider the spirit of the age.

How well these ideas hare been carried out in this course will be determined by the popular verdict from the great mass of intelligent teachers of the country, and their name is legion. We will send specimen pages free, or copies for examination to teachers at one-half the retail price, or a full set, WITH SLATES ATTACHED, for \(\$ 1.00\).

Address

\section*{A. S. BARNES \& CO., Publishers,} NEW YORK AND CHICAGO.

\section*{Peck's Brief Course}

\section*{IN \\ MATHEMATICS and MECHANICS.}

\section*{GANOT'S POPULAR PHYSICS}

For the use of schools and academies. \(12 \mathrm{mo}, 504 \mathrm{pp}\)., half roan. Elegantly illnstrated. Price \(\$ 1.75\).

\section*{PECK'S TREATISE ON MECHANICS,}

With Calculus. For the use of Colleges, Academies, and High Schools, where the Calculus is not separately taught. \(12 \mathrm{mo}, 344 \mathrm{pp}\)., half roan, marbled edges. Price \(\$ 2.00\).

\section*{PECK'S ELEMENTARY MECHANICS,}

Without Calcnlus. For the use of Colleges and Schools of Science. 12mo, 300 pp ., half roan, marbled edges. Price \(\$ 2.00\).
This work is a rewritten edition of the Treatise on Mechanics. Its principal difference is in the omission of the Calculus, which is published separately in fuller and perfected form.

\section*{PECK'S PRACTICAL CALCULUS.}

A Practical Treatise on the Differential and Integral Calculus, with some of its applications to Mechanics and Astronomy. 12mo, 208 pp ., half roan, marbled edges. Price \(\$ 1 . \%\).

\section*{PECK'S ANALYTICAL GEOMETRY.}

A Treatise, with applications to lines and surfaces of the first and second orders. 12 mo , 212 pp ., half roan. Price \(\$ 1 . \% 5\).

\section*{DAVIES \& PECK'S MATHEMATICAL DICTIONARY.}
```

"EVERY TEACHER SHOULD HAVE A COPY."

```

Mathematical Dictionary and Cyclopedia of Mathematical Science: Comprising definitions of all the terms employed in Mathematics, an analysis of each branch, and of the whole as forming a single science. By Charles Davies, LL.D., and Wm. G. Peck. Price \(\$ 5.00\).

One or more of these works by Peck are used in most American Colleges-among them Yale, Harvard, Columbia, Princeton, Trinity, Cornell, Illinois, Wesleyan, State University, Wisconsin, Capitol University, Ohio. Also in the Schools of Mines and Scientific Schools, almost without exception-such as N. Y. School of Mines, Troy Polytechnic, Yale and Harvard Sclentific Schools, Етс., Етс.

Auy or all of the above works are sent, post-paid, on receipt of price, or at one-third off to teackers for examination.

\author{
A. S. BARNES \& CO., Publishers,
}

111 \& 113 WILLIAM SiT.,
New York.

113 \& 115 STATE ST., Chicago.

\section*{NATURAL SCIENCE.}

\section*{"FOURTEEN WEEKS" IN EACH BRANCH.}

\section*{by J. DORmAN STEELE, A. M.} Steele's 14 Weeks Course in Chemistry \(\begin{gathered}\text { NEW... } \$ 150 \\ \text { ED. } \\ 50\end{gathered}\) Steele's 14 Weeks Course in Astronomy . 150 Steele's 14 Weeks Course in Philosophy . 150 Steele's 14 Weeks Course in Geology. . 150 Steele's 14 Weeks Course in Physiology • 150
Our Text-Books in these studles are, as a gencral thing, dull and uninteresting. They contain from 400 to 600 pages of dry facts and unconnected details. They abound in that whleh the student cannot learn, much less remember. The pupil commences the study, is confused by the ane print and coarse print, and neither knowing exactly what to lcarn nor what to hasten over, is crowded through the slugle term generally assigned to each branch, and frequently comes to the close without a definite and exact idea of a single scientific principle.
Steele's Fourteen Weeks Courses contain only that which every well-informed person should know, while all that whlch concerns only the professional scientist is omitted. The language is clear, simple, and interesting, and the illustrations bring the subject within the range of home life and daily experience. They give such of the general principles and the prominent facts as a pupil can make familiar as honsehold words within a singlo term. The type is large and open; there is no fine print to annoy; the cnts are coples of genuine experiments or natural phenomena, and are of fine execntion.
In fine, by a system of condensation pecultarly his own, the author reduces each branch to the limits of a single term of stady, while sacrifing nothing that is cssential, and nothing that is usually retained from the stady of the larger manuals in common use. Thas the stadent has rare opportunity to economize lis time, or rather to employ that which he has to the best advantage.
A notable feature is the author's charming "style," fortified by an enthnsiasm over his subject in which the student will not fail to partake. Believing that Natural Science is full of fascination, he has monlded it into a form that attracts rhe attentlon and kindles the enthusiasm of the pupil.

The recent editions contain the author's "Practical Questions" on a plan never before attempted in scientific text-books. These are questions as to the nature and cause of common phenomena, and are not directly answered in the text, the deslgn being to test and promote an intelligent use of the student's knowledge of the foregoing principles.

\footnotetext{
Steele's General Key to his Works . . . . *1 50
This work is mainly composed of Answers to the Practical Questions and Solulions of the Problems in the author's celebrated "Foarteen Weeks Courses" in the several selences, with many hints to teachers, minor Tables, \&c. Should bn on every toacher's derk.
}

\section*{MODERN IAANGUAGE.}
French and English Primer, ..... 10
German and English Primer, ..... 10
Spanish and English Primer, ..... 10
The names of common objects properly illustrated and arranged in aasylessons.
Ledru's French Fables, ..... 75
Ledru's French Grammar, ..... 100
Ledru's French Reader, ..... 100
The author's long experience has enabled him to present the most thoronghly practical text-books extant, in this brauch. The system of pronunciation (by phonetic illustration) is original with this author, and will commend itself to all American teachers, as it enables their pupils to secure an absolutely correct pronunciation without the assistance of a native master. This feature is peculiarly valuable also to "self-taught" students. The directions for ascertaining the gender of French nouns-also a great stumbling-block-are peculiar to this work, and will be found remarkably competent to the end proposed. The criticism of teachers and the test of the school-room is invited to this excellent series, with confidence.
Worman's French Echo, ..... 125To teach conversational French by actual practice, on an entirely newplan, which recognizes the importance of the student learning to thinly inthe language which he speaks. It furnishes an extensive vocabulary ofwords and expressions in common use, and suffices to free the learnerfrom the embarrassments which the peculiarities of his own tongue arelikely to be to him, and to make him thoroughly familiar with the useof proper idioms.
Worman's German Echo, ..... 12 in
On the same plan. See Worman's German Series, page 42.
Pujol's Complete French Class-Book, ..... 225
Offers, in one volume, methodically arranged, a complete French course -usually embraced in series of from five to twelve books, including the bulky and expensive Lexicon. Here are Grammar, Conversation, and choice Literature-selected from the best French authors. Each branch is thoroughly handled; and the student, having diligently completed the course as prescribed, may consider himself, without further application, au fait in the most polite and elegant language of modern times.
Maurice-Poitevin's Grammaire Francaise, .
American schools are at last supplied with an American edition of this famous text-book. Many of our best institutions have for years been pro- curing it from abroad rather than forego the advantages it offers. The policy of putting students who have acquired some proficiency from the ordinary text-books, into a Grammar written in the vernacular, can not be too highly commended. It affords an opportunity for finish and review at once; while embodying abundant practice of its own rules.100
Joynes' French Pronunciation, ..... 30
Willard's Historia de los Estados Unidos, ..... 200The History of the United States, translated by Professors Tolon andDe Tornos, will be found a valuable, instructive, and entertaiaing reud-ing-book fur Spanish classee.

\section*{THE \\ TEACHERS' LIBRARY。}

\section*{Object Lessons-Welch . . . . . . . . . \(\$ 10 C\)}

This is a complete exposition of the popular modern system of "object teaching," for teachers of primary classes.
Theory and Practice of Teaching-Page . ..... * 150
This volume has, without doubt, been read by two hundred thonsand teachers, and its popularity remains undiminished-large editions being exhansted yearly. It was the pioncer, as it is now the patriarch of professional worlis for teachers.
The Graded School-Wells . ..... *1 25
The proper way to organize graded schools is here illustrated. The author has availed binzelf of the best elements of the several systems prevalent in Boston, New York, Philadelphia, Cincinnati, St. Louis, and other cities.
The Normal-Holbrook ..... * 50

Carries a working schoul on Its visit to teachers, showing the most approved methods of teaching all the common branches, including the technicalitics, explanations, demonstrations, and definitions futroductory and peculiar to each branch.
The Teachers' Institute-Fowle . ..... *1 25

This is a volume of suggestions inspired by the anthor's experience at institutes, in the instruction of young teachers. A thousand points of interest to this class are most satisfactorily dealt with.
Schools and Schoolmasters-Dickens ..... *1 25Appropriate selections from the writings of the great novelist.
The Metric System-Davies ..... *1 50

Considered with reference to its general introduction, and embracing the views of John Quincy Adamis and Sir John Herschel.
The Student;-The Educator-Phelps . each,*1 50
The Discipline of Life-Phelps ..... 75

The authoress of these works is one of the most distinguished ariters on education; and they cannot fail to prove a valunble addition to the Schooi and Tenchers' Libraries, being in a high degree both interesting and iustructive.
A Scientific Basis of Education-Hecker ..... 50Adaptation of study and classification by temperaments.

\section*{Liberal Education of Women-Orton}

Treats of "the demand and the method;" being a compilation of the best and most advanced thought on this subject, by the leading writers and educators in England and America. Edited by a Professor in Vassar College.

\section*{Education Abroad-Northrop . . . . . . *1 50}

A thorough discussion of the advantages and disadvantages of sending American children to Europe to be educated; also, Papers on Legal Prevention of Illiteracy, Study and Health, Labor as an Educator, and other kindred subjects. By the Hon. Secretary of Education for Connecticut.

\section*{The Teacher and the Parent-Northend . . *1 50}

A treatise upon common-school education, designed to lead teachers to view their ealling in its true light, and to stimulate them to fidelity.

\section*{The Teachers' Assistant-Northend . . . . *1 50}

A natural continuation of the author's previous work, more directly calculated for daily use in the administration of school discipline and instruction.

\section*{School Government-Jewell *1 50}

Full of advanced ideas on the subject which its title indicates. The criticisms upon current theories of punishment and schemes of administration have excited general attention and comment.

\section*{Grammatical Diagrams-Jewell . . . . . *1 00}

The diagram system of teaching grammar explained, defended, and improved. The curious in literature, the searcher for truth, those interested in new inventions, as well as the disciples of Prof. Clark, who would see their favorite theory fairly treated, all want this book. There are many who would like to be made familiar with this system before risking its use in a class. The opportunity is here afforded.

\section*{The Complete Examiner-Stone . . . . . . *1 25}

Consists of a series of questions on every English branch of school and academic instruction, with reference to a given page or article of leading text-books where the answer may be found in full. Prepared to aid teachers in securing certificates, pupils in preparing for promotion, and teachers in selecting review questions.

\section*{School Amusements-Root . . . . . . . . *1 50}

To assist teachers in making the school interesting, with hints upon the management of the school-room. Rules for military and gymnastic exercises are included. Illustrated by diagrams.

\section*{Institute Lectures-Bates.}

These lectures, originally delivered before institutes, are based upon various topics in the departments of mental and moral culture. The volume is calculated to prepare the will, awaken the inquiry, and stimulate the thought of the zealous teacher.

\section*{Method of Teachers' Institutes-Bates}

Sets forth the best method of conducting institutes, with a detailed account of the object, organization, plan of instruction, and true theory of education on which such instruction should be based.

\section*{History and Progress of Education .}

The systems of education prevailing in all nations and ages, the gradual advance to the present time, and the bearing of the past upon the present in this regard, are worthy of the careful investigation of all concerned in education.
American Education-Mansfield ..... 150A trentise on the principles and elements of edncation, as practiced inthis country, with ideas towards distinctive republican and Onristian edu-cation.
American Institutions-De Tocqueville ..... 50
A valuable Index to the genlus of our Government.
Universal Education-Mayhew ..... 75The subject is approached with the clear, keen perception of one whohas observed its necessity, and realized its feasibility and expediencyslike. The redeening and elevating power of improved common schoolsconstltutes the inspiration of the volume.
Higher Christian Education-Dwight ..... 150A treatise on the princlples and spirit, the modes, directions, and ra-snlts of all true teaching; showing that right education should appeal toevery element of enthusiasm in the teacher's naturu.
Oral Training Lessons-Barnard ..... *I 00The object of thls very useml work is to furnish materiel for instruc-tors to impart orally to their clawses, in branches not usinilly taught incominon schools, embracing all departments of Natural Science andmucb general knowledge.
Lectures on Natural History-Chadbourne ..... 75Affording many themes for oral instruction in this interesting science-espeoially in schools where it is not pursued as a class exercise.
Outlines of Mathematical Science-Davies ..... *1 00
^ manual suggesting the best methods of presenting mathematical instruction on the part of the teacher, with that comprehensive riew of the whole which is necessary to the intelligent treatnent of a part, in science.
Nature \& Utility of Mathematics-Davies . .*1 ..... 50
An elaborate and lucid exposition of the principles which lie at the foundation of pure mathematics, with a highly ingenious application of their results \(w\) the development of the essential idea of the different branclies of the sclence.
Mathematical Dictionary-Davies \& Peck .*5 ..... 00This cyclopedia of mathematical sclence defines with completeness,precision, and accuracy, every technical terin, thus constituting a populartreatise on each branch, and a general view of the whole subject.
School Architecture-Barnard ..... *2 ..... 25
Attention to here called to the vital counection between a good schoot ho ise and a gond schoul, with plans and apeclications for securing the formir in the mout eonnumical and satisfactory iwanner.

\section*{THE SCHOOL LIBRARY.}

The two elements of instruction and entertainment were never more happily combined than in this collection of standard books. Children and adults alike will here find ample food for the mind, of the sort that is easily digested, while not degenerating to the level of modern romance.
LIBRARY OF LITERATURE.(lilton's Paradise Lost. Boyd's Illustrated Ed., \$1 60Young's Night Thoughts . . . . do. . . 160Cowper's Task, Table Talk, \&c. . do. . . 160Thomson's Seasons . . . . . . do. . . 160Pollok's Course of Time . . . . do. . . 160

These works, models of the best and purest literature, are beautifully illustrated, and notes explain all doubtful meanings.

\section*{Lord Bacon's Essays (Boyd's Edition) . . . 160}

Another grand English classic, affording the highest example of purity in language and siyle.

\section*{The Iliad of Homer. Translated by Pope. . . 80}

Those who are unable to read this greatest of ancient writers in the original, should not fail to avail themselves of this metrical version.

> Compendium of Eng. Literature-Cleveland, 250 English Literature of XIXth Century do. 250 Compendium of American Literature do. 250

Nearly one hundred and fifty thousand volumes of Prof. Cleveland's inimitable compendiums have been sold. Taken together they present a complete view of literature. To the man who can afford but a few books these will supply the place of an extensive library. From commendations of the very highest anthorities the following extracts will give some idea of the enthusiasm with which the works are regarded by scholars:
With the Bible and your volumes one might leave libraries without very painful regret.-The work cannot be found from whichein the same limits so much interesting and valuable information may be obtained.-Good taste, fine scholarship, familiar acquaintance with literature, nnwearied industry, tact acquired by practice, an interest in the culture of the young, and regard for truth, purity, philanthropy and religion are united in Mr. Cleveland.-A judgment clear and impartial, a taste at once delicate and severe.-The biographies are just and discriminating.-An admirable bird's-eye view.-Acquaints the reader with the characteristic method, tone, and quality of each writer.-Succinct, carefully written, and wonderfully comprehensive in detail, etc., etc.

\section*{Milton's Poelical Works-Cleveland}

\footnotetext{
This is the very best edition of the great Poet. It includes a life of the anthor, notes, dissertations on each poem, a faultless text, and is the only edition of Milton with a complete verbal Index.
}

18
w
-

4
\(+\)

\section*{"FOURTEEN WEEXS" I| MATURAL SCEENCE.}

A BRIEFITREA'IISFIN FACHIBRANCH BY


14
Theno volumes constituto the most avallable, practical, and attractive text-books on the Scícuces ever published. Each volume may be completed in a single term of study. the famous practical questions
devised by this anthor are alone sufficient to place his books in every Academy and Grammar School of the land. These are questions as to the nature and cause of common phenomena, and are not directly answered in the text, the design being to test and promote an intelligent use of the student's knowledge of the foregoing principles.
TO MANE SCIENCE POPULAR
is a prime object of these books. To this end each aubject is invested with a charming futerest by the pecullarly happy use of language and illustration in which this anthor excels.

\section*{THEIR HEAVY PREDECESSORS}
demand as much of the student's time for the acquisition of the principles of a single branch as these for the whole course.

PUBLIC APPRECIATION.
The author's great anccess in meeting an urgent, popular need, is indicated by the fact (probably unparalleled in the history of scientific text-books), that although the frst volume was issued in 1867, the yearly sale is already at the rate of


\section*{PHYSIOLOGY AND HEALTH.}

By EDWARD JARVIS, M.D.

JARIIS'ELEMENTS OF PIIYSIOLOGY, PHYSIOLOGY AND LAWS OF HEALTH.
The only books extant which approach this subject with a proper view of the true object of teaching Physiology in schools, viz., that scholars may know how to take care of their own health. The child instracted from these works will be always

\section*{BOTANY.}

\section*{WOOD'S AMERICAN BOTANIST AND FLORIST.}

\footnotetext{
This new and eagerly expected work is the result of the author's experience and We-long labors in

CLASSIFYING THE SCIENCE OF BOTANY.
He has at length attained the realization of hls hopes by a wonderfully ingenlous process of condensation and arrangement, and presents to the world in this single moder-ate-sized volume a COMPLETE MANUAL.
In 870 duodecimo pages he has actually recorded and defned
\[
\text { NEARLY } 4,000 \text { SPECIES. }
\]

The treatises on Deacriptive and Structural Botany are models of concleo statement, which leave nothing to be rald. Of entirely new features, the mort notable are the Synoptical Tables for the blackboard, and the distinction of apecles and varletles by varlation in the type.
Prof. Wood, by this work, establishes a jast claim to his title of the great
}

And Only Thorough and Complete Mathematical Series.

\section*{IN TINREE PARIS.}

\section*{I. COMMON SCHOOL COURSE.}

Davies' Primary Arithmetic.-The fundamental principles displa Object Lessons.
Davies' Intellectual Arithmetic-Referring all operations to the w the only tangible basis for logical development.
Davies' \{lements of Written Arithmetic-A practical introduc the whole subject. Theory subordinated to Practice.
Davies' Practical Arithmetic.*-The mostsuccessful combination of \({ }^{\prime}\) and Practice, clear, exact, brief, and comprehensive.

\section*{II. ACADEMIC COURSE.}

Davies' University Arithmetic**-Treating the subject exhanstir a science, in a logical series of connected propositions.
Davies' Blementary Algebra.*-A connecting link, conducting the easily from arithmetical processes to abstract analysis.
Davies' University Algebra.*-For institutions desiring a more co but not the fullest coarse in pure Algebra.
Davies' Practical Mathematics.-The science practically applied useful arts, as Drawing, Architecture, Surveying, Mechanics, etc.
Davies' Zlementary Geometry.-The important principles in simple but with all the exactness of vigorous reasoning:
Davies' 玉lements of Surveying,-Re-written in 1870. The simple most practical presentation for youths of 12 to 16.

\section*{III. COLLEGIATE COURSE.}

Davies' Bourdon's Algebra_*-Embracing Sturm's Theorem, and a exhaustive and scholarly course.
Davies' University Algebran*-A shorter course than Bourdon, for I tions have less time to give the subject.
Davies' Zegendre's Geometry:-Acknowledged bite only satisfactory t of its grade. 300,000 copies have been sold.
Davies' Analytical Geometry and Calculus-The shorter tre combined in one volume, are more avallable for American courses of study.
Davies" Analytical Geometry. \(\}\) The original compendiums, for tho
Davies" Dife \& Int. Calculus: siring to give full time to each brai
Davies' Descriptive Geometry:-With application to Spherical Trigo try, Spherical Projections, and Warped Surfaces.
Davies' Shades, Shadows, and Perspectiven-A succinct exposit the mathematical principles involved.
Davies' Science of TIathematics-For teachers, embracing I. Grammar of Abitimemtic,
III. Logio and Uthity of Mathem II. OUtlines or Mathematics,

\section*{Bll adter, all datamers, amll all Times.}

\section*{4 Hermpy zinu Hillori minic}
istory is Philosophy teaching by Examples."

\section*{UNITED STATES.}
1. Youth's History of the UNITED STATES. By James vTEite, author of the National Geographical Series. An elementary work n the catechetical plan, with Maps, Engravings, Memoriter Tables, etc. For youngest pupils.
ard's School History, for Grammar Schools and Acaderaic classes. igned to cultivate the memory, the intellect, and the taste, and to sow tho Is of yime he enntemplation of the actions of the good and great.
 I doubtral portions so introduced as not to deceive, whlle adding extended irm to the snbject.

ERAL.Willard's Universal History, a vast subject so arranged and illustrated as to be lese difficult to acquire or retain. Its cole exbstance, in fact, is summarized on one fere, in a grand "Temple of me , or Picture of Nations.
neral Summary of History. Being tho Summaries of American, and English and French Iltstory, bound in one volnme. The leading events in a nistorles of these three nations epitomized in the briefest manner.

\section*{. S. BARNES \& CO.,} PUBIISEIERS.
```


[^0]: 4. How many kinds of quantities are employed in Algebra? How are they distinguished? What are known quantities? What are uuknown quantities? By what are the known quantities represented? By what are the unkiown quantities represented? When an unknown quantity becomes known, how is it often denoted?
 5. What is the sign of addition called? When placed between two quantities, what does it indicate?
 6. What is the sign of subtraction ealled? When placed between two ruautities, what does it indicate?
[^1]: 7. How is the sign of multiplication read? When placed between two quantities, what does it indicate? In how many ways may maltiplication be indicated?
 8. What is a factor? How many kinds of factors are there? How many factors are there in 3abe?
 9. Huw is the sign of division read? When written between two quantities, what does it indicate? How many ways are there of indicating division?
[^2]: 10. What is the sign of equality? When placed between two quantities, what does it indicate?
 11. How is the sign of inequality read? Which quantity is placed on the side of the opening?
 12. What does.\cdot indicate?
 13. What is a coefficient? How many times is a taken in 5 a. By what may a coefficient be denoted? If no coefficient is written, what coefficient is understood? In 5ax, how many times is $a x$ taken? Mow ruany times is x taken?
[^3]: 14. What is an exponent? In a^{3}, how many times is a taken as a fao or? When no exponent is written, what is understood?
 15. What is a power of a quantity? What is the third power of 2 , of 4 ? Of 6 ?
 16. What is the ront of a quantity? What incricates a root? What indicates the kind of root? What is the index of the square root? Of the cube root? Of the m th root?
[^4]: 27. For what is the vincular used? Point out the other ways in which this may be done?
 28. What is the reciprocal of a quantity?
 29. What is the numerical value of an algebraical expreasion?
[^5]: ¿3. What is the rule for the addition of any algebraic quantities?

[^6]: 84. Do the words add and sum, in Algebra, convey the same ideas an In Arithmetic. What is the algebraic sum of 9 and -4 ? Of 8 and - 2 ? May an algebraic sum be negative? What is the sum of 5 and - 10? How are anch sume distinguiahed from arithmutiral sums?
[^7]: 89. How is the subtraction of a polynomial indicated? How is this Indieated operation performed? How may the result be again put under the first form? What is the general rule in regard to the parenthesis?
 90. What is the sign which immediately precedes a quantity called? What is the eign which precedes the parenthesis called? What is the
[^8]: 42 What is the rule fos multiplying oue monomial by another? 3^{*}

[^9]: 41. How are the terms of a polynomial arranged with reference to a particular letter? What is this letter called? It the leading letter in the multiplicand and multiplier is the same, which will be the leading lettez in the product?
[^10]: 45. What is division? What is the frst quantity called? The secord? The third? What is gireu in division? What is recpuired?
 46. What is the rule for the division of monomials?
[^11]: 85. Tnder what circumstances will the division of monomials be impossible? How will the quantities then be expressed? How is a mono mial fraction reduced to its simplest form?
[^12]: 51. How do you divide a polynomial by a monomial?
[^13]: 60. By what is any product divisible? By applying this principle, what follows from Formula (1)? What from (2)? What from (3)? What from (4)? What from (5)? What from (6)?
[^14]: fit When may a binomial be factored by this method?
 67. When may a binomial be factored by this method?
 68. What is the common diviser of two guantities γ

[^15]: 69. What is a simple or prime factor? Is a prime factor, common to two quantities, a common divisor?
 70. What is the greatest common divisor?
 71. If both quantities can be resolved into prime factors how do you Gud the greatest common divipory
[^16]: 72 When is one quantity a multiple of anotber?

[^17]: 73. When is a quantity a conmon multiple of several others?
 74. What is the least common multiple of two or more quantities?
 75. What does the common mıltiple of two or more quantities contain, is factors? Llow may the least common multiple be found?

 - The mullipie of a quantity, lo almply s dividend which will sive an exset quatient

[^18]: 76. If 1 be divided into any number of equal parts, what is pach part called?
 77. What is a fraction?
 78. Of bow manv parts is any fraction composed? What are they sallen! What does the denominator show? What the mumerator? What is tho fractional unit equal in?
[^19]: 79. What is an entire quantity? When may it be regarded as a frac tion?
 80. What is a mixed quantity?
 81. How may a fraction be multiplied by any quantity ?

 82 How may a fraction be divided by any quautity?

[^20]: 93. What follows from the preceding prineiples?
 94. What operations may be performed without al'ering the value of a fraction?
 95. What is the tranaformation of a quantity?
[^21]: 86. How do you reduce an entire quantity to a fractional form having a given denominator?
 87. How do you reduce a fraction to its lowest terms?
[^22]: 90. How do you reduce fractions having different deneminators, to equi valent fractions haring the least common denominator? When the ntmerators have no corumon factor, how do you reduce them?
[^23]: 94. What is the rule for the division of fractions?
[^24]: 103. How many transformations are employed in the solution of equations of the first degree? What are they?
 104. Give the rule for elearing an equation of fractions? In what three ways may the reduction be effeeted?
[^25]: 108. Give the rule for solving equations of the first degree with oue unknown quantity.
[^26]: 111. What are simultancous equatiost P
 112. What is elimination? How many methods of elimination are there? What are they?
[^27]: 114 G've the rule for elimination by substitution. When is this method aked to the greatent advantage ?

[^28]: 117. Give the ru'f for solving any group of simultaneous equations?
[^29]: 118. What is a power of a quantity? What is the power when tbe quantity is taken once as a factor? When taken twice? Three times? n times? How is a power indicated? In cuery power, how many things are considered? Name them.
[^30]: 119. What is the rule for raising a monomial to any power? When the monomial is positive, what will be the sign of its powers? When negative, what powrers will be plus? what miuus?
[^31]: 123. How many terms does the first power of a binomial contain? The sccond! The third? The nth power?
 124. If beth terms of a binomial are positive, what will be the signs of the terms of the power? If the second term is angative, how are the signs of the terms?
[^32]: 125. Which is the leading letter of a binomial? What is the exponent of this letter in the first term? - How does it change in the terms towards the right? What is the exponent of the second letter in the second term? How does it change in the terms towards the right? What is it in the last terna? What is the sum of the exponents in any term equal to?
[^33]: 126. What is the coefficient of the first term? What is the corfficiens of the second term? How do you find the coefficient of the third term How do you find the coefficient of any term? What are the coefficieute of the first and last terms? How are the coefficients of the exponer.te of any two terms equally diatant from the two extremes?
[^34]: *This ingenious method of mriting the development of a binomial is due to Profescor Wriluan G. Pbok, of Columbis College.

[^35]: 131. Give the rule for the extraction of the square rost of numbers? What is the first step? What the secimd? What the third? What the fourth? What the fitth?
[^36]: 132. What takes place when the given number is a perfect square? How many places of figures will there be in the root? If the given number is not a perfect square, what may he done after all the periods are brought dowu?
[^37]: 134. What is the rule when the numerator and denominator are not perfect squares ?
[^38]: 187. When is a monomial a perfect square? What monomials aro these whose square roots cannot be extracted? What are such expres tions called?
 188. When is a nonomial an imperfect square? What are ench gran thtios called? What is a radical guantity ?
[^39]: 139. To what is the square root of the product of two quantities equai?
 140. To what is the square root of the quotient of two quartities equal ?
[^40]: 141. Give the rule for simplifying radizals of the second degree. How do you determine whether a given number has a factor which is a perfect square?
[^41]: 146. Give the rule for the multiplication of radicals.
[^42]: 148. What is the square of a binomial equal to? What is the square Jf a trinomial equal in? To what is the equare of any polynomial equal ?
 149. Give the rule for extracting the square root of a polynomisl? Wuat is the first step? W1 at the second? What the third? What the fourch?
[^43]: 150. Can a binomial ever be a perfect power? Why not? When is \& trinomial a perfect square? When, in extracting the square root, we find that the first term of the remainder is not divisible by twice the root, is the polynomial a perfect power or not?
[^44]: 153. How many terins are there in a complete equation? What is the Arst term? What is the second term? What is the third term? How many operations are there in reducing an equation of the second degree to the required form? What is the first? What the second? What the third? What the fourth?
